咨询与建议

限定检索结果

文献类型

  • 226 篇 期刊文献
  • 139 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 373 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 360 篇 工学
    • 289 篇 电气工程
    • 248 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 37 篇 电子科学与技术(可...
    • 21 篇 交通运输工程
    • 20 篇 控制科学与工程
    • 15 篇 仪器科学与技术
    • 12 篇 软件工程
    • 5 篇 网络空间安全
    • 4 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 石油与天然气工程
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 24 篇 理学
    • 13 篇 物理学
    • 8 篇 化学
    • 8 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
  • 5 篇 军事学
    • 4 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 373 篇 automatic modula...
  • 112 篇 deep learning
  • 71 篇 modulation
  • 63 篇 feature extracti...
  • 37 篇 cognitive radio
  • 34 篇 convolutional ne...
  • 26 篇 convolutional ne...
  • 25 篇 training
  • 24 篇 wireless communi...
  • 23 篇 signal to noise ...
  • 22 篇 convolution
  • 17 篇 computational mo...
  • 16 篇 ofdm
  • 15 篇 machine learning
  • 12 篇 signal classific...
  • 12 篇 spectrum sensing
  • 11 篇 task analysis
  • 11 篇 neural networks
  • 11 篇 cumulants
  • 10 篇 cnn

机构

  • 10 篇 harbin engn univ...
  • 7 篇 beijing univ pos...
  • 6 篇 xidian univ sch ...
  • 6 篇 beihang univ sch...
  • 6 篇 nanjing univ pos...
  • 5 篇 nanjing univ aer...
  • 5 篇 njupt coll telec...
  • 5 篇 harbin inst tech...
  • 5 篇 beijing univ pos...
  • 4 篇 hanyang univ dep...
  • 4 篇 beihang univ unm...
  • 4 篇 state key lab co...
  • 4 篇 xidian univ stat...
  • 3 篇 dalian maritime ...
  • 3 篇 beijing inst tec...
  • 3 篇 indian inst tech...
  • 3 篇 natl key lab ele...
  • 3 篇 beihang univ sch...
  • 3 篇 beijing informat...
  • 3 篇 north china univ...

作者

  • 12 篇 kim dong-seong
  • 11 篇 gui guan
  • 10 篇 huang sai
  • 9 篇 lin yun
  • 9 篇 wang yu
  • 8 篇 feng zhiyong
  • 7 篇 ding wenrui
  • 7 篇 zhang duona
  • 7 篇 jing xiaojun
  • 7 篇 zhou fuhui
  • 7 篇 wu qihui
  • 6 篇 chang shuo
  • 6 篇 yoon dongweon
  • 6 篇 zhou quan
  • 5 篇 huynh-the thien
  • 5 篇 zhang baochang
  • 5 篇 fan yangyu
  • 5 篇 zheng shilian
  • 5 篇 dobre octavia a.
  • 5 篇 ma jitong

语言

  • 363 篇 英文
  • 6 篇 其他
  • 3 篇 中文
检索条件"主题词=Automatic Modulation Classification"
373 条 记 录,以下是201-210 订阅
排序:
A Novel Sparse Classifier for automatic modulation classification using Cyclostationary Features
收藏 引用
WIRELESS PERSONAL COMMUNICATIONS 2017年 第3期96卷 4895-4917页
作者: Satija, Udit Ramkumar, Barathram Manikandan, M. Sabarimalai Indian Inst Technol Sch Elect Sci Bhubaneswar Orissa India
automatic modulation classification plays a key role in cognitive radio for recognizing the modulation scheme. In this paper, we propose a new classifier based on sparse signal decomposition using an overcomplete comp... 详细信息
来源: 评论
Robust automatic modulation classification Under Varying Noise Conditions
收藏 引用
IEEE ACCESS 2017年 5卷 19733-19741页
作者: Wu, Zhilu Zhou, Siyang Yin, Zhendong Ma, Bo Yang, Zhutian Harbin Inst Technol Sch Elect & Informat Engn Harbin 150001 Heilongjiang Peoples R China China Acad Space Technol Beijing 100081 Peoples R China
automatic modulation classification (AMC) plays a key role in non-cooperative communication systems. Feature-based (FB) methods have been widely studied in particular. Most existing FB methods are deployed at a fixed ... 详细信息
来源: 评论
k-Sparse Autoencoder-Based automatic modulation classification With Low Complexity
收藏 引用
IEEE COMMUNICATIONS LETTERS 2017年 第10期21卷 2162-2165页
作者: Afan Ali Fan Yangyu Northwestern Polytech Univ Sch Elect & Informat Engn Xian 710072 Peoples R China
How to reduce complexity of the practical automatic modulation classification systems is a very active research area. Moreover, keeping the classification accuracy to a near optimal level is an added challenge. Recent... 详细信息
来源: 评论
Low Complexity automatic modulation classification Based on Order-Statistics
收藏 引用
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2017年 第1期16卷 400-411页
作者: Han, Lubing Gao, Feifei Li, Zan Dobre, Octavia A. Tsinghua Univ Dept Automat State Key Lab Intelligent Technol & Syst Beijing 100084 Peoples R China Tsinghua Univ Dept Automat Tsinghua Natl Lab Informat Sci & Technol Beijing 100084 Peoples R China Xidian Univ Sch Telecommun Engn State Key Lab Integrated Serv Networks Xian 710071 Peoples R China Mem Univ Dept Elect & Comp Engn St John NF A1B 3X9 Canada
In this paper, we propose three automatic modulation classification classifiers based on order-statistics and reduced order-statistics, where the order-statistics are the random variables sorted by ascending order and... 详细信息
来源: 评论
Blind automatic modulation classification in Multipath Fading Channels  22
Blind Automatic Modulation Classification in Multipath Fadin...
收藏 引用
2017 22nd International Conference on Digital Signal Processing (DSP)
作者: Gouldieff, Vincent Palicot, Jacques Daumont, Steredenn IETR Cent Supelec Ave Boulaie CS 47601 F-35576 Cesson Sevigne France Zodiac Data Syst 2 Rue Caen F-14740 Bretteville Lorgueilleus France
automatic modulation classification (AMC) has been deeply studied in the context of Cognitive Radio (CR) where it represents a required step between signal detection and demodulation. Several blind methods were propos... 详细信息
来源: 评论
Immunity of automatic modulation classification algotithms against inaccurate estimation of signal parameters  9
Immunity of Automatic Modulation Classification algotithms a...
收藏 引用
Communication and Information Technologies (KIT)
作者: Kosmowski, Krzysztof Prawdzik, Krzysztof Baranowski, Grzegorz Mil Commun Inst Radio Commun & Elect Warfare Dept Zegrze Poland
automatic modulation classification lays important role in the systems of electromagnetic spectrum monitoring. However performance of the algorithms is depreciated due to inaccurate estimation of signal parameters. Th... 详细信息
来源: 评论
automatic modulation classification in Practical Wireless Channels
Automatic Modulation Classification in Practical Wireless Ch...
收藏 引用
7th International Conference on Information and Communication Technology Convergence (ICTC) - Towards Smarter Hyper-Connected World
作者: Kim, Sung-Jin Yoon, Dongweon Hanyang Univ 222 Wangsimni Ro Seoul South Korea
Flexible spectrum utilization becomes one of the major agendas in the next generation wireless communications. A core technology to efficiently adjust spectrum is automatic modulation classification (AMC) which recent... 详细信息
来源: 评论
On classifiers for blind feature-based automatic modulation classification over multiple-input-multiple-output channels
收藏 引用
IET COMMUNICATIONS 2016年 第7期10卷 790-795页
作者: Kharbech, Sofiane Dayoub, Iyad Zwingelstein-Colin, Marie Simon, Eric Pierre Higher Inst Technol Studies Gabes Dept Commun & Informat Technol STIC Gabes 6011 Tunisia Univ Valenciennes & Hainaut Cambresis IEMN DOAE Lab UMR CNRS 8520 F-59313 Valenciennes France Univ Lille 1 TELICE Lab IEMN UMR CNRS 8520 F-59100 Lille France
modulation recognition is crucial for a good environmental awareness required by cognitive radio systems. In this study, the authors design and compare models of four among the most commonly used classifiers for featu... 详细信息
来源: 评论
automatic modulation classification for Low SNR Digital Signal in Frequency-Selective Fading Environments
收藏 引用
WIRELESS PERSONAL COMMUNICATIONS 2015年 第3期84卷 1891-1906页
作者: Wallayt, Waqas Younis, Muhammad S. Imran, Muhammad Shoaib, Muhammad Guizani, Mohsen Natl Univ Sci & Technol Islamabad 44000 Pakistan King Saud Univ Coll Comp & Informat Sci Riyadh Saudi Arabia Qatar Univ Doha 2713 Qatar
In this research, a classifier is proposed for automatic modulation classification of some common modulation schemes, i.e., BPSK, QPSK, 8-PSK and 16-QAM. Our proposed classifier considers multipath fading effects on t... 详细信息
来源: 评论
Deep Neural Network-based automatic modulation classification Technique
Deep Neural Network-based Automatic Modulation Classificatio...
收藏 引用
7th International Conference on Information and Communication Technology Convergence (ICTC) - Towards Smarter Hyper-Connected World
作者: Kim, Byeoungdo Kim, Jaekyum Chae, Hyunmin Yoon, Dongweon Choi, Jun Won Hanyang Univ Dept Elect Engn Seoul South Korea
Deep neural network (DNN) has recently received much attention due to its superior performance in classifying data with complex structure. In this paper, we investigate application of DNN technique to automatic classi... 详细信息
来源: 评论