咨询与建议

限定检索结果

文献类型

  • 226 篇 期刊文献
  • 139 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 373 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 360 篇 工学
    • 289 篇 电气工程
    • 248 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 37 篇 电子科学与技术(可...
    • 21 篇 交通运输工程
    • 20 篇 控制科学与工程
    • 15 篇 仪器科学与技术
    • 12 篇 软件工程
    • 5 篇 网络空间安全
    • 4 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 石油与天然气工程
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 24 篇 理学
    • 13 篇 物理学
    • 8 篇 化学
    • 8 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
  • 5 篇 军事学
    • 4 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 373 篇 automatic modula...
  • 112 篇 deep learning
  • 71 篇 modulation
  • 63 篇 feature extracti...
  • 37 篇 cognitive radio
  • 34 篇 convolutional ne...
  • 26 篇 convolutional ne...
  • 25 篇 training
  • 24 篇 wireless communi...
  • 23 篇 signal to noise ...
  • 22 篇 convolution
  • 17 篇 computational mo...
  • 16 篇 ofdm
  • 15 篇 machine learning
  • 12 篇 signal classific...
  • 12 篇 spectrum sensing
  • 11 篇 task analysis
  • 11 篇 neural networks
  • 11 篇 cumulants
  • 10 篇 cnn

机构

  • 10 篇 harbin engn univ...
  • 7 篇 beijing univ pos...
  • 6 篇 xidian univ sch ...
  • 6 篇 beihang univ sch...
  • 6 篇 nanjing univ pos...
  • 5 篇 nanjing univ aer...
  • 5 篇 njupt coll telec...
  • 5 篇 harbin inst tech...
  • 5 篇 beijing univ pos...
  • 4 篇 hanyang univ dep...
  • 4 篇 beihang univ unm...
  • 4 篇 state key lab co...
  • 4 篇 xidian univ stat...
  • 3 篇 dalian maritime ...
  • 3 篇 beijing inst tec...
  • 3 篇 indian inst tech...
  • 3 篇 natl key lab ele...
  • 3 篇 beihang univ sch...
  • 3 篇 beijing informat...
  • 3 篇 north china univ...

作者

  • 12 篇 kim dong-seong
  • 11 篇 gui guan
  • 10 篇 huang sai
  • 9 篇 lin yun
  • 9 篇 wang yu
  • 8 篇 feng zhiyong
  • 7 篇 ding wenrui
  • 7 篇 zhang duona
  • 7 篇 jing xiaojun
  • 7 篇 zhou fuhui
  • 7 篇 wu qihui
  • 6 篇 chang shuo
  • 6 篇 yoon dongweon
  • 6 篇 zhou quan
  • 5 篇 huynh-the thien
  • 5 篇 zhang baochang
  • 5 篇 fan yangyu
  • 5 篇 zheng shilian
  • 5 篇 dobre octavia a.
  • 5 篇 ma jitong

语言

  • 363 篇 英文
  • 6 篇 其他
  • 3 篇 中文
检索条件"主题词=Automatic Modulation Classification"
373 条 记 录,以下是231-240 订阅
排序:
Time and Space Complexity Reduction of KFDA-based LTE modulation classification
收藏 引用
International Journal of Sensors, Wireless Communications and Control 2023年 第2期13卷 117-129页
作者: Kadoun, Iyad Bizaki, Hossein Khaleghi Department of Electrical and Electronic Engineering Malek Ashtar University of Technology Tehran Iran
Background: Kernel Fisher discriminant analysis (KFDA) is a nonlinear discrimination technique for improving automatic modulation classification (AMC) accuracy. Our study showed that the higher-order cumulants (HOCs) ... 详细信息
来源: 评论
Stealthy Adversarial Attacks Against Automated modulation classification in Cognitive Radio
Stealthy Adversarial Attacks Against Automated Modulation Cl...
收藏 引用
IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)
作者: Fernando, Praveen Wei-Kocsis, Jin Purdue Univ Dept Comp & Informat Technol W Lafayette IN 47907 USA
In cognitive radio systems, wireless spectrum sensing plays a crucial role in identifying the state of the wireless environment, which leads to the effective utilization of scarce spectral resources for various applic... 详细信息
来源: 评论
Signal modulation classification Based on the Transformer Network
收藏 引用
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 2022年 第3期8卷 1348-1357页
作者: Cai, Jingjing Gan, Fengming Cao, Xianghai Liu, Wei Xidian Univ Sch Elect Engn Xian 710071 Peoples R China Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China Univ Sheffield Dept Elect & Elect Engn Sheffield S1 3JD S Yorkshire England
In this work, the Transformer Network (TRN) is applied to the automatic modulation classification (AMC) problem for the first time. Different from the other deep networks, the TRN can incorporate the global informatio... 详细信息
来源: 评论
Exploiting ResNeXt with Convolutional Shortcut for Signal modulation classification at Low SNRs
Exploiting ResNeXt with Convolutional Shortcut for Signal Mo...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Gu, Yuanyuan Zhou, Xin Univ Chinese Acad Sci Inst Software Chinese Acad Sci Beijing Peoples R China
Most of the current ResNeXt-based AMC models only use identity mappings as skip connections, which cannot significantly enhance the representation abilities of the network. To address this problem, we proposed an impr... 详细信息
来源: 评论
Measurement-based modulation classification in Unlicensed Millimeter-Wave Bands
Measurement-based Modulation Classification in Unlicensed Mi...
收藏 引用
IEEE Wireless Communications and Networking Conference (WCNC)
作者: Sumen, Gizem Gorcin, Ali Qaraqe, Khalid A. TUBITAK Informat & Informat Secur Res Ctr BILGEM HISAR Lab Kocaeli Turkiye Istanbul Tech Univ Dept Elect & Commun Engn Istanbul Turkiye Yildiz Tech Univ Dept Elect & Commun Engn Istanbul Turkiye Texas A&M Univ Qatar Dept Elect & Comp Engn Doha Qatar
automatic modulation classification (AMC) facilitates adaptive modulation schemes, leading to the minimization of pilot signals, thus affecting spectral efficiency and reducing the power consumption in wireless commun... 详细信息
来源: 评论
modulation Signal classification Algorithm Based on Denoising Residual Convolutional Neural Network
收藏 引用
IEEE ACCESS 2022年 10卷 121733-121740页
作者: Guo, Yecai Wang, Xue Univ Informat Sci & Technol Dept Elect & Informat Engn Nanjing 210044 Peoples R China Wuxi Univ Dept Elect Informat Engn Wuxi 214105 Peoples R China
Traditional denoising algorithms are easy to lose signal details, resulting in low recognition accuracy of modulated signals. A modulation signal classification algorithm based on denoising residual Convolutional Neur... 详细信息
来源: 评论
UniQGAN: Unified Generative Adversarial Networks for Augmented modulation classification
收藏 引用
IEEE COMMUNICATIONS LETTERS 2022年 第2期26卷 355-358页
作者: Lee, Insup Lee, Wonjun Korea Univ Sch Cybersecur Network & Secur Res Lab Seoul 02841 South Korea
Deep learning has been widely applied to automatic modulation classification (AMC), and there have been many studies on data augmentation techniques using deep generative models to improve performance. However, existi... 详细信息
来源: 评论
Maximum Likelihood Distillation for Robust modulation classification  48
Maximum Likelihood Distillation for Robust Modulation Classi...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Maroto, Javier Bovet, Gérôme Frossard, Pascal Epfl Switzerland Armasuisse Science & Technology Cyber-Defence Campus Switzerland
Deep Neural Networks are being extensively used in communication systems and automatic modulation classification (AMC) in particular. However, they are very susceptible to small adversarial perturbations that are care... 详细信息
来源: 评论
High-Efficiency modulation classification With Temporal-Frequency Analysis Based on Multi-channel Filter Bank
High-Efficiency Modulation Classification With Temporal-Freq...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Dai, Yifan Gao, Xin Jing, K.E. Tian, Bin School of Telecommunications Engineering Xididan University Xi'an China No.8511 Research Institute of CASIC Nanjing China National Time Service Center Chinese Academy of Sciences Xi'an China
Efficiency is now a key challenge in automatic modulation classification (AMC), particularly in resource-constrained environments like mobile devices in 6G networks. This paper presents a framework based on the filter... 详细信息
来源: 评论
Deep Learning Based modulation classification in Radio Access Network
Deep Learning Based Modulation Classification in Radio Acces...
收藏 引用
2023 IEEE Globecom Workshops, GC Wkshps 2023
作者: Guo, Hongqing Peng, Shengliang Li, Tongyun Crisp, Michael Penty, Richard College of Information Science and Engineering Huaqiao University Xiamen361021 China Uppsala University Division of Signals and Systems Department of Electrical Engineering Uppsala75 103 Sweden University of Cambridge Centre for Photonic Systems Electrical Division Department of Engineering 9JJ Thomson Avenue CambridgeCB3 0FA United Kingdom
The growing demand for traffic shaping and manipulation for efficient last-mile coverage has driven extensive research using emerging artificial intelligence to overcome the capacity hurdle in next-generation wireless... 详细信息
来源: 评论