咨询与建议

限定检索结果

文献类型

  • 224 篇 期刊文献
  • 139 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 371 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 358 篇 工学
    • 286 篇 电气工程
    • 249 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 36 篇 电子科学与技术(可...
    • 21 篇 交通运输工程
    • 20 篇 控制科学与工程
    • 15 篇 仪器科学与技术
    • 12 篇 软件工程
    • 6 篇 网络空间安全
    • 4 篇 航空宇航科学与技...
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 石油与天然气工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 24 篇 理学
    • 13 篇 物理学
    • 8 篇 化学
    • 8 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
  • 5 篇 军事学
    • 4 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 371 篇 automatic modula...
  • 113 篇 deep learning
  • 70 篇 modulation
  • 62 篇 feature extracti...
  • 37 篇 cognitive radio
  • 31 篇 convolutional ne...
  • 25 篇 convolutional ne...
  • 24 篇 wireless communi...
  • 24 篇 training
  • 23 篇 signal to noise ...
  • 22 篇 convolution
  • 16 篇 computational mo...
  • 15 篇 ofdm
  • 14 篇 machine learning
  • 12 篇 spectrum sensing
  • 11 篇 signal classific...
  • 11 篇 task analysis
  • 11 篇 neural networks
  • 11 篇 cumulants
  • 10 篇 cnn

机构

  • 10 篇 harbin engn univ...
  • 6 篇 xidian univ sch ...
  • 6 篇 beihang univ sch...
  • 6 篇 beijing univ pos...
  • 6 篇 nanjing univ pos...
  • 5 篇 nanjing univ aer...
  • 5 篇 njupt coll telec...
  • 5 篇 harbin inst tech...
  • 5 篇 beijing univ pos...
  • 4 篇 hanyang univ dep...
  • 4 篇 beihang univ unm...
  • 4 篇 state key lab co...
  • 4 篇 xidian univ stat...
  • 3 篇 dalian maritime ...
  • 3 篇 beijing inst tec...
  • 3 篇 indian inst tech...
  • 3 篇 natl key lab ele...
  • 3 篇 beihang univ sch...
  • 3 篇 beijing informat...
  • 3 篇 north china univ...

作者

  • 12 篇 kim dong-seong
  • 11 篇 gui guan
  • 9 篇 lin yun
  • 9 篇 wang yu
  • 9 篇 huang sai
  • 7 篇 ding wenrui
  • 7 篇 feng zhiyong
  • 7 篇 zhang duona
  • 7 篇 jing xiaojun
  • 7 篇 zhou fuhui
  • 7 篇 wu qihui
  • 6 篇 yoon dongweon
  • 6 篇 zhou quan
  • 5 篇 huynh-the thien
  • 5 篇 zhang baochang
  • 5 篇 fan yangyu
  • 5 篇 zheng shilian
  • 5 篇 dobre octavia a.
  • 5 篇 chang shuo
  • 5 篇 ma jitong

语言

  • 361 篇 英文
  • 6 篇 其他
  • 3 篇 中文
检索条件"主题词=Automatic Modulation Classification"
371 条 记 录,以下是71-80 订阅
排序:
PASS-Net: A Pseudo Classes and Stochastic Classifiers-Based Network for Few-Shot Class-Incremental automatic modulation classification
收藏 引用
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2024年 第12期23卷 17987-18003页
作者: Tan, Haoyue Zhang, Zhenxi Li, Yu Shi, Xiaoran Wang, Li Yang, Xinyao Zhou, Feng Xidian Univ Minist Educ Key Lab Elect Informat Countermeasure & Simulat Te Xian 710126 Peoples R China Honor Device Co Ltd Xian 710126 Peoples R China iFLYTEK Co Ltd Hefei 230000 Peoples R China
Recently, significant progress has been made in deep learning, which has been widely applied in automatic modulation classification (AMC) with remarkable outcomes. However, current deep learning based AMC (DL-AMC) alg... 详细信息
来源: 评论
Joint Signal Detection and automatic modulation classification via Deep Learning
收藏 引用
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2024年 第11期23卷 17129-17142页
作者: Xing, Huijun Zhang, Xuhui Chang, Shuo Ren, Jinke Zhang, Zixun Xu, Jie Cui, Shuguang Chinese Univ Hong Kong Shenzhen Shenzhen Future Network Intelligence Inst FNii She Sch Sci & Engn SSE Shenzhen 518172 Peoples R China Chinese Univ Hong Kong Shenzhen Guangdong Prov Key Lab Future Networks Intelligenc Shenzhen 518172 Peoples R China Beijing Univ Posts & Telecommun Sch Cyberspace Secur Beijing 100876 Peoples R China
Signal detection and modulation classification are two crucial tasks in various wireless communication systems. Different from prior works that investigate them independently, this paper studies the joint signal detec... 详细信息
来源: 评论
A Convolutional and Transformer Based Deep Neural Network for automatic modulation classification
收藏 引用
China Communications 2023年 第5期20卷 135-147页
作者: Shanchuan Ying Sai Huang Shuo Chang Zheng Yang Zhiyong Feng Ningyan Guo Key Laboratory of Universal Wireless Communications Ministry of EducationBeijing University of Posts and TelecommunicationsBeijing 100876China
automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil *** this paper,a novel data-driven fra... 详细信息
来源: 评论
automatic modulation classification of Real Signals in AWGN Channel Based on Sixth-Order Cumulants
Automatic Modulation Classification of Real Signals in AWGN ...
收藏 引用
作者: Simic, M. Brno University of Technology
automatic modulation classification (AMC) represents an important integral part of modern communication systems. While novel AMC algorithms based on complex neural network structures showed significant performance imp... 详细信息
来源: 评论
automatic modulation classification of radar signals utilizing X-net
收藏 引用
DIGITAL SIGNAL PROCESSING 2022年 第0期123卷 103396-103396页
作者: Chen, Kuiyu Zhang, Jingyi Chen, Si Zhang, Shuning Zhao, Huichang Nanjing Univ Sci & Technol Sch Elect & Opt Engn Nanjing 210094 Peoples R China
automatic modulation classification (AMC) of radar signals has long been a challenge, especially in the area of electronic reconnaissance, where collecting and labeling numerous signal samples are usually harsh and im... 详细信息
来源: 评论
automatic modulation classification Scheme Based on LSTM With Random Erasing and Attention Mechanism
收藏 引用
IEEE ACCESS 2020年 8卷 154290-154300页
作者: Chen, Yufan Shao, Wei Liu, Jin Yu, Lu Qian, Zuping Army Engn Univ PLA Coll Commun Engn Nanjing 210007 Peoples R China Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan 430079 Peoples R China
automatic modulation classification (AMC) is a key technology of cognitive radio used in non-cooperative communication. Recently, deep learning has been applied to AMC tasks. In this paper, an AMC scheme based on deep... 详细信息
来源: 评论
automatic modulation classification in Time-Varying Channels Based on Deep Learning
收藏 引用
IEEE ACCESS 2020年 8卷 197508-197522页
作者: Zhou, Yu Lin, Tian Zhu, Yu Fudan Univ Dept Commun Sci & Engn Key Lab Informat Sci Electromagnet Waves MoE Shanghai 200433 Peoples R China
automatic modulation classification (AMC) is an important technology in military signal reconnaissance and civilian communications such as cognitive radios. Most of the existing works focused on the AMC in additional ... 详细信息
来源: 评论
AMCRN: Few-Shot Learning for automatic modulation classification
收藏 引用
IEEE COMMUNICATIONS LETTERS 2022年 第3期26卷 542-546页
作者: Zhou, Quan Zhang, Ronghui Mu, Junsheng Zhang, Hongming Zhang, Fangpei Jing, Xiaojun Beijing Univ Posts & Telecommun Key Lab Trustworthy Distributed Comp & Serv Beijing 100876 Peoples R China China Elect Technol Grp Corp Informat Sci Acad Beijing 100048 Peoples R China
Deep learning (DL) has been widely applied in automatic modulation classification (AMC), while the superb performance highly depends on high-quality datasets. Motivated by this, the AMC under few-shot conditions is co... 详细信息
来源: 评论
A Deep Learning-Based Novel Class Discovery Approach for automatic modulation classification
收藏 引用
IEEE COMMUNICATIONS LETTERS 2023年 第11期27卷 3018-3022页
作者: Zhang, Rui Zhao, Yanlong Yin, Zhendong Li, Dasen Wu, Zhilu Harbin Inst Technol Sch Elect & Informat Engn Harbin 150001 Peoples R China
The existing automatic modulation classification (AMC) methods require the training and testing datasets share a common set of modulation categories. However, the AMC model may encounter the need to discriminate novel... 详细信息
来源: 评论
ConvLSTMAE: A Spatiotemporal Parallel Autoencoders for automatic modulation classification
收藏 引用
IEEE COMMUNICATIONS LETTERS 2022年 第8期26卷 1804-1808页
作者: Shi Yunhao Xu Hua Jiang Lei Qi Zisen Air Force Engn Univ Informat & Nav Coll Xian 710038 Shaanxi Peoples R China
automatic modulation classification (AMC) is the key technique in both military and civilian wireless communication. However, the performance is unsatisfactory, even several deep learning-based methods are involved. T... 详细信息
来源: 评论