咨询与建议

限定检索结果

文献类型

  • 113 篇 期刊文献
  • 70 篇 会议

馆藏范围

  • 183 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 139 篇 电气工程
    • 112 篇 信息与通信工程
    • 75 篇 计算机科学与技术...
    • 20 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 交通运输工程
    • 10 篇 控制科学与工程
    • 7 篇 软件工程
    • 5 篇 测绘科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 机械工程
    • 3 篇 航空宇航科学与技...
    • 3 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 兵器科学与技术
  • 18 篇 理学
    • 6 篇 物理学
    • 6 篇 化学
    • 5 篇 生物学
    • 4 篇 地球物理学
    • 2 篇 数学
    • 1 篇 天文学
    • 1 篇 大气科学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 6 篇 医学
    • 6 篇 临床医学
  • 5 篇 军事学
    • 5 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 183 篇 automatic modula...
  • 62 篇 deep learning
  • 44 篇 modulation
  • 40 篇 feature extracti...
  • 22 篇 training
  • 18 篇 signal to noise ...
  • 16 篇 convolutional ne...
  • 15 篇 convolutional ne...
  • 13 篇 convolution
  • 11 篇 wireless communi...
  • 11 篇 neural networks
  • 9 篇 cnn
  • 8 篇 transformer
  • 8 篇 transformers
  • 8 篇 cognitive radio
  • 8 篇 time-frequency a...
  • 8 篇 accuracy
  • 7 篇 task analysis
  • 7 篇 amr
  • 7 篇 machine learning

机构

  • 8 篇 univ elect sci &...
  • 6 篇 beijing inst tec...
  • 6 篇 northwestern pol...
  • 5 篇 lab electromagne...
  • 5 篇 beijing inst tec...
  • 4 篇 tsinghua univ la...
  • 4 篇 harbin engn univ...
  • 4 篇 univ massachuset...
  • 4 篇 nanjing univ pos...
  • 4 篇 tsinghua univ de...
  • 3 篇 univ elect sci &...
  • 3 篇 xiamen univ sch ...
  • 2 篇 univ houston dep...
  • 2 篇 xidian univ sch ...
  • 2 篇 jiaxing univ col...
  • 2 篇 shandong univ sc...
  • 2 篇 univ strathclyde...
  • 2 篇 school of electr...
  • 2 篇 turkish naval ac...
  • 2 篇 zhejiang univ te...

作者

  • 6 篇 zhou ruolin
  • 5 篇 wang shafei
  • 4 篇 wang jian
  • 4 篇 wang jintao
  • 4 篇 luo chunbo
  • 4 篇 lu zhilin
  • 4 篇 luo yang
  • 4 篇 li yunjie
  • 4 篇 xu jialang
  • 4 篇 zhang ziwei
  • 4 篇 zhu mengtao
  • 3 篇 an hongyang
  • 3 篇 zhang bolin
  • 3 篇 morehouse todd
  • 3 篇 zeng rui
  • 3 篇 han zhu
  • 3 篇 gunawan erry
  • 3 篇 zhang hang
  • 3 篇 zhang fuxin
  • 3 篇 li lixin

语言

  • 177 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"主题词=Automatic Modulation Recognition"
183 条 记 录,以下是1-10 订阅
排序:
automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction
收藏 引用
Defence Technology(防务技术) 2024年 第4期34卷 328-338页
作者: Yangtian Liu Xiaopeng Yan Qiang Liu Tai An Jian Dai Science and Technology on Electromechanical Dynamic Control Laboratory School of Mechatronical EngineeringBeijing Institute of TechnologyBeijing 100081China China Research and Development Academy of Machinery Equipment Beijing 100089China
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference ***,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(S... 详细信息
来源: 评论
automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
收藏 引用
Defence Technology(防务技术) 2024年 第3期33卷 364-373页
作者: Guanghua Yi Xinhong Hao Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han Science and Technology on Electromechanical Dynamic Control Laboratory School of Mechatronical EngineeringBeijing Institute of TechnologyBeijing 100081China BIT Tangshan Research Institute Beijing 100081China
automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive ***,the AMR of radiation source signals at low SNRs still faces a great ***,the AMR method of radiation so... 详细信息
来源: 评论
automatic modulation recognition Method Based on Channel-Enhanced Convolution and Linear-Angular Attention
收藏 引用
IEEE ACCESS 2025年 13卷 50428-50436页
作者: Gong, An Jia, Anxuan Wu, Shuhui Fan, Bitian Wei, Xintong China Univ Petr East China Qingdao Inst Software Coll Comp Sci & Technol Qingdao 266580 Peoples R China
automatic modulation recognition (AMR) is an electronic signal processing technology designed to automatically identify and classify the modulation type of radio signals. Existing AMR methods suffer from a significant... 详细信息
来源: 评论
automatic modulation recognition of Unknown Interference Signals Based on Graph Model
收藏 引用
IEEE WIRELESS COMMUNICATIONS LETTERS 2024年 第9期13卷 2317-2321页
作者: Zhang, Qiancheng Ji, Hongbing Li, Lin Zhu, Zhigang Xidian Univ Fac Sch Elect Engn Xian 710071 Peoples R China
automatic modulation recognition (AMR), which involves blind identification of interference modulation classes, is an essential technique for maintaining communication security. In this letter, a framework for end-to-... 详细信息
来源: 评论
automatic modulation recognition of Dual-Component Radar Signals Using ResSwinTSwinT Network
收藏 引用
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 2023年 第5期59卷 6405-6418页
作者: Ren, Bing Teh, Kah Chan An, Hongyang Gunawan, Erry Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 611731 Peoples R China
automatic modulation recognition plays an important role in military and civilian applications, identifying the modulation format of received signals before signal demodulation. With the increasing complexity and dens... 详细信息
来源: 评论
automatic modulation recognition of radar signals based on histogram of oriented gradient via improved principal component analysis
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2023年 第6期17卷 3053-3061页
作者: Chen, Kuiyu Chen, Si Zhang, Shuning Zhao, Huichang Nanjing Univ Sci & Technol Sch Elect & Opt Engn Nanjing Peoples R China
automatic modulation recognition (AMR) of radar signals plays a critical role in electronic reconnaissance. Current AMR algorithms are mainly based on convolutional neural networks (CNN), which can learn the feature h... 详细信息
来源: 评论
automatic modulation recognition with Deep Learning Algorithms  32
Automatic Modulation Recognition with Deep Learning Algorith...
收藏 引用
32nd IEEE Signal Processing and Communications Applications Conference (SIU)
作者: Camlibel, Aysenur Karakaya, Bahattin Tanc, Yesim Hekim Istanbul Univ Cerrahpasa Muhendisl Fak Elekt Elekt Muhendisligi Bolumu Istanbul Turkiye
In this study, an automatic modulation classifier based on Convolutional Neural Network (CNN) was developed using deep learning algorithms. A synthetic dataset generated with GNU Radio consisting of eleven modulations... 详细信息
来源: 评论
automatic modulation recognition: A Hybrid Approach Using Deep Learning and K-Means Clustering  8th
Automatic Modulation Recognition: A Hybrid Approach Using De...
收藏 引用
2024 World Congress in Computer Science, Computer Engineering and Applied Computing-CSCE
作者: Cavarretta, Connor Hijar-Soria, Mihair Hussain, Nahiyan Jia, Ruting Calif State Univ Northridge Dept Elect & Comp Engn Northridge CA 91330 USA
This paper introduces a hybrid model for automatic modulation recognition (AMR) that enhances classification accuracy of digital communication signals across various signal-to-noise ratios (SNR). The proposed model in... 详细信息
来源: 评论
TC-MSNet: A Multi-feature Extraction Neural Framework for automatic modulation recognition
收藏 引用
WIRELESS PERSONAL COMMUNICATIONS 2025年 第1-2期140卷 377-398页
作者: Wang, Yang Feng, Yongxin Song, Bixue Tian, Binghe Qian, Bo Shenyang Ligong Univ Sch Informat Sci & Engn 6 Nanping Middle Rd Shenyang 110159 Liaoning Peoples R China
In the approaches of automatic modulation recognition (AMR), modulation modes with similar characteristics are prone to be confused by the adverse factors such as noise, inevitably bringing challenges to the accuracy ... 详细信息
来源: 评论
A Novel LSTM Architecture for automatic modulation recognition: Comparative Analysis With Conventional Machine Learning and RNN-Based Approaches
收藏 引用
IEEE ACCESS 2025年 13卷 72526-72543页
作者: Ansari, Sam Mahmoud, Soliman Majzoub, Sohaib Almajali, Eqab Jarndal, Anwar Bonny, Talal Univ Sharjah Res Inst Sci & Engn Sharjah U Arab Emirates Univ Sharjah Elect Engn Dept Sharjah U Arab Emirates Fayoum Univ Elect Engn Dept Al Fayyum 63514 Egypt Univ Sharjah Comp Engn Dept Sharjah U Arab Emirates
The recognition of modulation types in received signals is essential for signal detection and demodulation, with broad applications in telecommunications, defense, and wireless communications. This paper introduces a ... 详细信息
来源: 评论