咨询与建议

限定检索结果

文献类型

  • 114 篇 期刊文献
  • 71 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 185 篇 工学
    • 140 篇 电气工程
    • 115 篇 信息与通信工程
    • 76 篇 计算机科学与技术...
    • 22 篇 电子科学与技术(可...
    • 14 篇 仪器科学与技术
    • 12 篇 控制科学与工程
    • 11 篇 交通运输工程
    • 7 篇 软件工程
    • 5 篇 测绘科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 机械工程
    • 3 篇 航空宇航科学与技...
    • 3 篇 环境科学与工程(可...
    • 3 篇 网络空间安全
    • 2 篇 石油与天然气工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
  • 18 篇 理学
    • 7 篇 物理学
    • 7 篇 化学
    • 5 篇 生物学
    • 4 篇 地球物理学
    • 1 篇 数学
    • 1 篇 天文学
    • 1 篇 大气科学
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 6 篇 医学
    • 6 篇 临床医学
  • 5 篇 军事学
    • 5 篇 军队指挥学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 185 篇 automatic modula...
  • 62 篇 deep learning
  • 44 篇 modulation
  • 40 篇 feature extracti...
  • 22 篇 training
  • 18 篇 signal to noise ...
  • 16 篇 convolutional ne...
  • 15 篇 convolutional ne...
  • 13 篇 convolution
  • 11 篇 wireless communi...
  • 11 篇 neural networks
  • 9 篇 cnn
  • 8 篇 transformer
  • 8 篇 transformers
  • 8 篇 cognitive radio
  • 8 篇 time-frequency a...
  • 8 篇 machine learning
  • 8 篇 accuracy
  • 7 篇 task analysis
  • 7 篇 amr

机构

  • 8 篇 univ elect sci &...
  • 6 篇 beijing inst tec...
  • 6 篇 northwestern pol...
  • 5 篇 lab electromagne...
  • 5 篇 beijing inst tec...
  • 4 篇 tsinghua univ la...
  • 4 篇 harbin engn univ...
  • 4 篇 univ massachuset...
  • 4 篇 nanjing univ pos...
  • 4 篇 tsinghua univ de...
  • 3 篇 univ elect sci &...
  • 3 篇 xiamen univ sch ...
  • 2 篇 univ houston dep...
  • 2 篇 xidian univ sch ...
  • 2 篇 jiaxing univ col...
  • 2 篇 shandong univ sc...
  • 2 篇 univ strathclyde...
  • 2 篇 school of electr...
  • 2 篇 turkish naval ac...
  • 2 篇 zhejiang univ te...

作者

  • 6 篇 zhou ruolin
  • 5 篇 wang shafei
  • 4 篇 wang jian
  • 4 篇 wang jintao
  • 4 篇 wang ling
  • 4 篇 luo chunbo
  • 4 篇 lu zhilin
  • 4 篇 luo yang
  • 4 篇 li yunjie
  • 4 篇 xu jialang
  • 4 篇 zhang ziwei
  • 4 篇 zhu mengtao
  • 3 篇 an hongyang
  • 3 篇 zhang bolin
  • 3 篇 morehouse todd
  • 3 篇 zeng rui
  • 3 篇 han zhu
  • 3 篇 gunawan erry
  • 3 篇 zhang hang
  • 3 篇 yang xin

语言

  • 178 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"主题词=Automatic Modulation Recognition"
185 条 记 录,以下是71-80 订阅
排序:
automatic modulation recognition Method Based on Hybrid Model of Convolutional Neural Networks and Gated Recurrent Units
收藏 引用
SENSORS AND MATERIALS 2021年 第12期33卷 4229-4243页
作者: Hao, Xinyu Luo, Yu Ye, Qiubo He, Qi Yang, Guangsong Chen, Chin-Cheng Jimei Univ Sch Ocean Informat Engn Xiamen 361021 Fujian Peoples R China Guizhou Radio & Televis Bur Guiyang 550000 Guizhou Peoples R China Fujian Shipping Res Inst Xiamen 361021 Fujian Peoples R China
With the application of various wireless communication technologies, the electromagnetic environment has become more complex, and the recognition of signal modulation has become increasingly difficult. In this paper, ... 详细信息
来源: 评论
automatic modulation recognition Based on a DCN-BiLSTM Network
收藏 引用
SENSORS 2021年 第5期21卷 1577-1577页
作者: Liu, Kai Gao, Wanjun Huang, Qinghua Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China
automatic modulation recognition (AMR) is a significant technology in noncooperative wireless communication systems. This paper proposes a deep complex network that cascades the bidirectional long short-term memory ne... 详细信息
来源: 评论
automatic modulation recognition based on sample-transferable and branch-scalable method for signals in complex multipath channel
收藏 引用
Digital Signal Processing 2025年 166卷
作者: Yitong Lu Shujuan Hou Shiyi Yuan Qin Zhang Yazhe He Shouzhi Wang School of Information and Electronics Beijing Institute of Technology Beijing 100081 Beijing China
At present, there are a large number of mature deep learning related studies on automatic modulation recognition (AMR) for signals in the additive white Gaussian noise (AWGN) or fixed multipath channel. However, in ac... 详细信息
来源: 评论
Deep learning based automatic modulation recognition: Models, datasets, and challenges
收藏 引用
DIGITAL SIGNAL PROCESSING 2022年 第0期129卷
作者: Zhang, Fuxin Luo, Chunbo Xu, Jialang Luo, Yang Zheng, Fu-Chun Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu Peoples R China Univ Exeter Dept Comp Sci Exeter EX4 4RN England Harbin Inst Technol Shenzhen Sch Elect & Informat Engn Shenzhen Peoples R China
automatic modulation recognition (AMR) detects the modulation scheme of the received signals for further signal processing without needing prior information, and provides the essential function when such information i... 详细信息
来源: 评论
Sparsely Connected CNN for Efficient automatic modulation recognition
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2020年 第12期69卷 15557-15568页
作者: Tunze, Godwin Brown Huynh-The, Thien Lee, Jae-Min Kim, Dong-Seong Kumoh Natl Inst Technol Sch Elect Engn Gumi Si 39177 Gyeongsangbuk D South Korea
This paper proposes a convolutional neural network (CNN), called SCGNet, for low-complexity and robust modulation recognition in intelligent communication receivers. Principally, the network combines two types of spar... 详细信息
来源: 评论
Deep Learning for Robust automatic modulation recognition Method for IoT Applications
收藏 引用
IEEE ACCESS 2020年 8卷 117689-117697页
作者: Zhang, Tingping Shuai, Cong Zhou, Yaru Chongqing Jiaotong Univ Sch Informat Sci & Engn Chongqing 400074 Peoples R China Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Peoples R China
In the scenarios of non-cooperative wireless communications, automatic modulation recognition (AMR) is an indispensable algorithm to recognize various types of signal modulations before demodulation in many internet o... 详细信息
来源: 评论
A Spatiotemporal Multi-Channel Learning Framework for automatic modulation recognition
收藏 引用
IEEE WIRELESS COMMUNICATIONS LETTERS 2020年 第10期9卷 1629-1632页
作者: Xu, Jialang Luo, Chunbo Parr, Gerard Luo, Yang Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 611731 Peoples R China Univ Exeter Dept Comp Sci Exeter EX4 4RN Devon England Univ East Anglia Sch Comp Sci Norwich NR4 7TJ Norfolk England
automatic modulation recognition (AMR) plays a vital role in modern communication systems. This letter proposes a novel three-stream deep learning framework to extract the features from individual and combined in-phas... 详细信息
来源: 评论
Deep Learning-Based automatic modulation recognition Method in the Presence of Phase Offset
收藏 引用
IEEE ACCESS 2020年 8卷 42841-42847页
作者: Shi, Jie Hong, Sheng Cai, Changxin Wang, Yu Huang, Hao Gui, Guan Nanjing Univ Sci & Technol Sch Elect Engn & Optoelect Technol Zijin Coll Nanjing 210023 Jiangsu Peoples R China Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Jiangsu Peoples R China Yangtze Univ Sch Elect & Informat Jingzhou 434023 Peoples R China
automatic modulation recognition (AMR) plays an important role in various communications systems. It has the ability of adaptive modulation and can adapt to various complex environments. automatic modulation recogniti... 详细信息
来源: 评论
automatic Digital modulation recognition Based on Genetic-Algorithm-Optimized Machine Learning Models
收藏 引用
IEEE ACCESS 2022年 10卷 50265-50277页
作者: Ansari, Sam Alnajjar, Khawla A. Saad, Mohamed Abdallah, Saeed El-Moursy, Ali A. Univ Sharjah Dept Elect Engn Sharjah U Arab Emirates Univ Sharjah Dept Comp Engn Sharjah U Arab Emirates
recognition of the modulation scheme is the intermediate step between signal detection and demodulation of the received signal in communication networks. automatic modulation recognition (AMR) plays a central role in ... 详细信息
来源: 评论
Generalized automatic modulation recognition method based on distributed learning in the presence of data mismatch problem
收藏 引用
PHYSICAL COMMUNICATION 2021年 48卷 101428-101428页
作者: Wang, Juan Gui, Guan Sari, Hikmet Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Peoples R China
Deep learning-based automatic modulation recognition (DL-AMR) methods are mainly based on centralized learning and decentralized learning. These methods have been developed for many applications in heterogeneous wirel... 详细信息
来源: 评论