咨询与建议

限定检索结果

文献类型

  • 13 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 13 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 5 篇 理学
    • 3 篇 数学
    • 1 篇 物理学
    • 1 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...

主题

  • 19 篇 automatic algori...
  • 7 篇 machine learning
  • 3 篇 automatic hyper-...
  • 2 篇 dynamic tuning
  • 2 篇 auto-tuning
  • 2 篇 combinatorial op...
  • 2 篇 big clinical dat...
  • 2 篇 hpc
  • 2 篇 molecular dynami...
  • 2 篇 meta-learning
  • 1 篇 algorithm portfo...
  • 1 篇 population activ...
  • 1 篇 new generation m...
  • 1 篇 big biomedical d...
  • 1 篇 project scheduli...
  • 1 篇 interpretability
  • 1 篇 hyperparameter o...
  • 1 篇 reinforcement le...
  • 1 篇 data base manage...
  • 1 篇 ensemble learnin...

机构

  • 2 篇 tech univ munich...
  • 2 篇 univ utah dept b...
  • 1 篇 school of electr...
  • 1 篇 nc state univers...
  • 1 篇 beijing univ pos...
  • 1 篇 univ utah dept b...
  • 1 篇 codes res grp b-...
  • 1 篇 houston methodis...
  • 1 篇 univ jyvaskyla f...
  • 1 篇 univ vale rio si...
  • 1 篇 univ fed sao pau...
  • 1 篇 beijing univ pos...
  • 1 篇 univ tartu inst ...
  • 1 篇 tata consultancy...
  • 1 篇 tech univ cluj n...
  • 1 篇 university of co...
  • 1 篇 department of co...
  • 1 篇 fit cvut thakuro...
  • 1 篇 univ manchester ...
  • 1 篇 lanzhou univ tec...

作者

  • 3 篇 luo gang
  • 2 篇 bungartz hans-jo...
  • 2 篇 neumann philipp
  • 2 篇 seckler steffen
  • 2 篇 de causmaecker p...
  • 1 篇 basgalupp marcio...
  • 1 篇 rigo s.
  • 1 篇 tucker allen
  • 1 篇 keteyian steven ...
  • 1 篇 hangan anca
  • 1 篇 tchipev nikola
  • 1 篇 lopez-ibanez man...
  • 1 篇 mendes c.
  • 1 篇 reddy v. ramu
  • 1 篇 de barcelos a.
  • 1 篇 zhao fuqing
  • 1 篇 saini bhupinder ...
  • 1 篇 cerny jan
  • 1 篇 elshawi radwa
  • 1 篇 al-mallah mouaz ...

语言

  • 18 篇 英文
  • 1 篇 其他
检索条件"主题词=Automatic algorithm selection"
19 条 记 录,以下是1-10 订阅
排序:
automatic algorithm selection in Computational Software Using Machine Learning
Automatic Algorithm Selection in Computational Software Usin...
收藏 引用
IEEE International Conference on Machine Learning and Applications
作者: Matthew C. Simpson Qing Yi Jugal Kalita NC State University Raleigh NC 27695 University of Colorado Colorado Springs CO 80918
Computational software programs, such as Maple and Mathematica, heavily rely on superfunctions and meta-algorithms to select the optimal algorithm for a given task. These meta-algorithms may require intensive mathemat... 详细信息
来源: 评论
An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem
收藏 引用
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 2014年 第3期233卷 511-528页
作者: Messelis, Tommy De Causmaecker, Patrick CODeS Res Grp B-8500 Kortrijk Belgium
This paper investigates the construction of an automatic algorithm selection tool for the multi-mode resource-constrained project scheduling problem (MRCPSP). The research described relies on the notion of empirical h... 详细信息
来源: 评论
automaticAI-A hybrid approach for automatic artificial intelligence algorithm selection and hyperparameter tuning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 182卷 115225-115225页
作者: Czako, Zoltan Sebestyen, Gheorghe Hangan, Anca Tech Univ Cluj Napoca Dept Comp Sci Cluj Napoca Romania
Recently, more and more real life problems are solved using artificial intelligence (AI) algorithms. One of the biggest challenges when working with AI is the selection and tuning of the best algorithm for solving the... 详细信息
来源: 评论
FIT calculator: a multi-risk prediction framework for medical outcomes using cardiorespiratory fitness data
收藏 引用
SCIENTIFIC REPORTS 2024年 第1期14卷 1-10页
作者: Elshawi, Radwa Sakr, Sherif Al-Mallah, Mouaz H. Keteyian, Steven J. Brawner, Clinton A. Ehrman, Jonathan K. Univ Tartu Inst Comp Sci Tartu Estonia Houston Methodist DeBakey Heart & Vasc Ctr Houston TX USA Henry Ford Hosp Div Cardiovasc Med 6525 Second Ave Detroit MI 48202 USA
Accurately predicting patients' risk for specific medical outcomes is paramount for effective healthcare management and personalized medicine. While a substantial body of literature addresses the prediction of div... 详细信息
来源: 评论
A Hyperheuristic and Reinforcement Learning Guided Meta-heuristic algorithm Recommendation  27
A Hyperheuristic and Reinforcement Learning Guided Meta-heur...
收藏 引用
27th International Conference on Computer Supported Cooperative Work in Design (CSCWD)
作者: Zhu, Ningning Zhao, Fuqing Cao, Jie Lanzhou Univ Technol Sch Comp & Commun Lanzhou Peoples R China
automatic selection of the most appropriate algorithms for complex optimization problems has emerged as a cutting-edge trend in artificial intelligence. This approach circumvents the interpretability challenges posed ... 详细信息
来源: 评论
Comparative Research of Hyper-Parameters Mathematical Optimization algorithms for automatic Machine Learning in New Generation Mobile Network
收藏 引用
MOBILE NETWORKS & APPLICATIONS 2022年 第3期27卷 928-935页
作者: Zhang, Xiaohang Li, Yuqi Li, Zhengren Beijing Univ Posts & Telecommun Sch Econ & Management Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun Sch Modern Post Beijing 100876 Peoples R China
Under the configuration of the new generation communication network, the algorithm based on machine learning has been widely used in network optimization and mobile user behavior prediction. Therefore, the optimizatio... 详细信息
来源: 评论
N ways to simulate short-range particle systems: Automated algorithm selection with the node-level library AutoPas
收藏 引用
COMPUTER PHYSICS COMMUNICATIONS 2022年 273卷 108262-108262页
作者: Gratl, Fabio Alexander Seckler, Steffen Bungartz, Hans-Joachim Neumann, Philipp Tech Univ Munich Chair Sci Comp Comp Sci Munich Germany Helmut Schmidt Univ Chair High Performance Comp Hamburg Germany
AutoPas is an open-source C++ library delivering optimal node-level performance by providing the ideal algorithmic configuration for an arbitrary scenario in a given short-range particle simulation. It acts as a black... 详细信息
来源: 评论
MLtool: A Tool to Automate the Construction, Evaluation, and selection of Machine Learning Models
收藏 引用
IEEE LATIN AMERICA TRANSACTIONS 2019年 第7期17卷 1163-1170页
作者: Mendes, C. de Barcelos, A. Rigo, S. Univ Vale Rio Sinos Unisinos Sao Leopoldo RS Brazil
The use of Machine Learning has intensified in recent years, gaining notoriety in the most diverse applications. Thus, there is a growing demand for professionals in this area, which has favored the entry of countless... 详细信息
来源: 评论
automatic Surrogate Modelling Technique selection based on Features of Optimization Problems  19
Automatic Surrogate Modelling Technique Selection based on F...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Saini, Bhupinder Singh Lopez-Ibanez, Manuel Miettinen, Kaisa Univ Jyvaskyla Fac Informat Technol POB 35 Agora FI-40014 Jyvaskyla Finland Univ Manchester Alliance Manchester Business Sch Manchester Lancs England
A typical scenario when solving industrial single or multiobjective optimization problems is that no explicit formulation of the problem is available. Instead, a dataset containing vectors of decision variables togeth... 详细信息
来源: 评论
AutoPas: Auto-Tuning for Particle Simulations  33
AutoPas: Auto-Tuning for Particle Simulations
收藏 引用
33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS)
作者: Gratl, Fabio Seckler, Steffen Tchipev, Nikola Bungartz, Hans-Joachim Neumann, Philipp Tech Univ Munich Chair Sci Comp Comp Sci Munich Germany Univ Hamburg Sci Comp Hamburg Germany
The C++ library AutoPas aims at delivering optimal node-level performance for particle simulations. This paper describes the internally implemented algorithms, and how the library uses auto-tuning to dynamically selec... 详细信息
来源: 评论