咨询与建议

限定检索结果

文献类型

  • 13 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 13 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 5 篇 理学
    • 3 篇 数学
    • 1 篇 物理学
    • 1 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...

主题

  • 19 篇 automatic algori...
  • 7 篇 machine learning
  • 3 篇 automatic hyper-...
  • 2 篇 dynamic tuning
  • 2 篇 auto-tuning
  • 2 篇 combinatorial op...
  • 2 篇 big clinical dat...
  • 2 篇 hpc
  • 2 篇 molecular dynami...
  • 2 篇 meta-learning
  • 1 篇 algorithm portfo...
  • 1 篇 population activ...
  • 1 篇 new generation m...
  • 1 篇 big biomedical d...
  • 1 篇 project scheduli...
  • 1 篇 interpretability
  • 1 篇 hyperparameter o...
  • 1 篇 reinforcement le...
  • 1 篇 data base manage...
  • 1 篇 ensemble learnin...

机构

  • 2 篇 tech univ munich...
  • 2 篇 univ utah dept b...
  • 1 篇 school of electr...
  • 1 篇 nc state univers...
  • 1 篇 beijing univ pos...
  • 1 篇 univ utah dept b...
  • 1 篇 codes res grp b-...
  • 1 篇 houston methodis...
  • 1 篇 univ jyvaskyla f...
  • 1 篇 univ vale rio si...
  • 1 篇 univ fed sao pau...
  • 1 篇 beijing univ pos...
  • 1 篇 univ tartu inst ...
  • 1 篇 tata consultancy...
  • 1 篇 tech univ cluj n...
  • 1 篇 university of co...
  • 1 篇 department of co...
  • 1 篇 fit cvut thakuro...
  • 1 篇 univ manchester ...
  • 1 篇 lanzhou univ tec...

作者

  • 3 篇 luo gang
  • 2 篇 bungartz hans-jo...
  • 2 篇 neumann philipp
  • 2 篇 seckler steffen
  • 2 篇 de causmaecker p...
  • 1 篇 basgalupp marcio...
  • 1 篇 rigo s.
  • 1 篇 tucker allen
  • 1 篇 keteyian steven ...
  • 1 篇 hangan anca
  • 1 篇 tchipev nikola
  • 1 篇 lopez-ibanez man...
  • 1 篇 mendes c.
  • 1 篇 reddy v. ramu
  • 1 篇 de barcelos a.
  • 1 篇 zhao fuqing
  • 1 篇 saini bhupinder ...
  • 1 篇 cerny jan
  • 1 篇 elshawi radwa
  • 1 篇 al-mallah mouaz ...

语言

  • 18 篇 英文
  • 1 篇 其他
检索条件"主题词=Automatic algorithm selection"
19 条 记 录,以下是11-20 订阅
排序:
Discovering predictive ensembles for transfer learning and meta-learning
收藏 引用
MACHINE LEARNING 2018年 第1期107卷 177-207页
作者: Kordik, Pavel Cerny, Jan Fryda, Tomas FIT CVUT Thakurova 9 Prague 6 Czech Republic
Recent meta-learning approaches are oriented towards algorithm selection, optimization or recommendation of existing algorithms. In this article we show how data-tailored algorithms can be constructed from building bl... 详细信息
来源: 评论
FIT calculator: a multi-risk prediction framework for medical outcomes using cardiorespiratory fitness data
收藏 引用
SCIENTIFIC REPORTS 2024年 第1期14卷 1-10页
作者: Elshawi, Radwa Sakr, Sherif Al-Mallah, Mouaz H. Keteyian, Steven J. Brawner, Clinton A. Ehrman, Jonathan K. Univ Tartu Inst Comp Sci Tartu Estonia Houston Methodist DeBakey Heart & Vasc Ctr Houston TX USA Henry Ford Hosp Div Cardiovasc Med 6525 Second Ave Detroit MI 48202 USA
Accurately predicting patients' risk for specific medical outcomes is paramount for effective healthcare management and personalized medicine. While a substantial body of literature addresses the prediction of div... 详细信息
来源: 评论
N ways to simulate short-range particle systems: Automated algorithm selection with the node-level library AutoPas
收藏 引用
COMPUTER PHYSICS COMMUNICATIONS 2022年 273卷 108262-108262页
作者: Gratl, Fabio Alexander Seckler, Steffen Bungartz, Hans-Joachim Neumann, Philipp Tech Univ Munich Chair Sci Comp Comp Sci Munich Germany Helmut Schmidt Univ Chair High Performance Comp Hamburg Germany
AutoPas is an open-source C++ library delivering optimal node-level performance by providing the ideal algorithmic configuration for an arbitrary scenario in a given short-range particle simulation. It acts as a black... 详细信息
来源: 评论
A Hyperheuristic and Reinforcement Learning Guided Meta-heuristic algorithm Recommendation  27
A Hyperheuristic and Reinforcement Learning Guided Meta-heur...
收藏 引用
27th International Conference on Computer Supported Cooperative Work in Design (CSCWD)
作者: Zhu, Ningning Zhao, Fuqing Cao, Jie Lanzhou Univ Technol Sch Comp & Commun Lanzhou Peoples R China
automatic selection of the most appropriate algorithms for complex optimization problems has emerged as a cutting-edge trend in artificial intelligence. This approach circumvents the interpretability challenges posed ... 详细信息
来源: 评论
MLBCD: a machine learning tool for big clinical data
收藏 引用
HEALTH INFORMATION SCIENCE AND SYSTEMS 2015年 第1期3卷 3-3页
作者: Luo, Gang Univ Utah Dept Biomed Informat Salt Lake City UT 84108 USA
Background: Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data,"advancing clinical research, and improving healthcare. Machine learning is a powerful... 详细信息
来源: 评论
automatic Design of Evolutionary algorithms based on Entropy Triggers
Automatic Design of Evolutionary Algorithms based on Entropy...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: da Silva, Guilherme Ribeiro Basgalupp, Marcio P. Lorena, Ana Carolina Univ Fed Sao Paulo Inst Ciencia & Tecnol Sao Jose Dos Campos SP Brazil
The field of automatic algorithm design has received increasing attention in recent years. From a multitude of available algorithms, a researcher can effectively design a new one customized to his/her own problem. For... 详细信息
来源: 评论
PredicT-ML: a tool for automating machine learning model building with big clinical data
收藏 引用
HEALTH INFORMATION SCIENCE AND SYSTEMS 2016年 第1期4卷 5-5页
作者: Luo, Gang Univ Utah Dept Biomed Informat Suite 140421 Wakara Way Salt Lake City UT 84108 USA
Background: Predictive modeling is fundamental to transforming large clinical data sets, or "big clinical data," into actionable knowledge for various healthcare applications. Machine learning is a major pre... 详细信息
来源: 评论
Very high-level language design: A viewpoint
收藏 引用
Computer Languages 1975年 第1期1卷 3-16页
作者: Tucker, Allen Academic Computation Center Georgetown University Washington DC United States
Recent developments in very high-level language design indicate that these languages hold great promise for improving the level of man-machine communication, and hence improving computer and programmer utilization. (E... 详细信息
来源: 评论
AutoPas: Auto-Tuning for Particle Simulations  33
AutoPas: Auto-Tuning for Particle Simulations
收藏 引用
33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS)
作者: Gratl, Fabio Seckler, Steffen Tchipev, Nikola Bungartz, Hans-Joachim Neumann, Philipp Tech Univ Munich Chair Sci Comp Comp Sci Munich Germany Univ Hamburg Sci Comp Hamburg Germany
The C++ library AutoPas aims at delivering optimal node-level performance for particle simulations. This paper describes the internally implemented algorithms, and how the library uses auto-tuning to dynamically selec... 详细信息
来源: 评论