咨询与建议

限定检索结果

文献类型

  • 1,679 篇 会议
  • 214 篇 期刊文献

馆藏范围

  • 1,893 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 316 篇 工学
    • 160 篇 计算机科学与技术...
    • 157 篇 电气工程
    • 63 篇 控制科学与工程
    • 46 篇 电子科学与技术(可...
    • 30 篇 软件工程
    • 21 篇 信息与通信工程
    • 14 篇 机械工程
    • 13 篇 仪器科学与技术
    • 6 篇 测绘科学与技术
    • 6 篇 生物医学工程(可授...
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
    • 3 篇 核科学与技术
    • 3 篇 网络空间安全
    • 2 篇 力学(可授工学、理...
    • 2 篇 石油与天然气工程
    • 2 篇 船舶与海洋工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 生物工程
  • 49 篇 理学
    • 15 篇 物理学
    • 12 篇 系统科学
    • 9 篇 数学
    • 6 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 化学
  • 39 篇 管理学
    • 37 篇 管理科学与工程(可...
  • 14 篇 医学
    • 10 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 4 篇 农学
    • 3 篇 作物学
  • 2 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 1,893 篇 backpropagation ...
  • 1,270 篇 neural networks
  • 463 篇 artificial neura...
  • 453 篇 neurons
  • 327 篇 multi-layer neur...
  • 297 篇 convergence
  • 289 篇 feedforward neur...
  • 211 篇 multilayer perce...
  • 197 篇 computer network...
  • 191 篇 testing
  • 126 篇 algorithm design...
  • 125 篇 pattern recognit...
  • 122 篇 computer science
  • 119 篇 intelligent netw...
  • 112 篇 recurrent neural...
  • 110 篇 equations
  • 107 篇 fuzzy neural net...
  • 106 篇 training data
  • 100 篇 control systems
  • 100 篇 signal processin...

机构

  • 12 篇 school of electr...
  • 11 篇 department of el...
  • 9 篇 department of el...
  • 7 篇 department of el...
  • 5 篇 at and t bell la...
  • 5 篇 computer science...
  • 5 篇 faculty of engin...
  • 4 篇 school of inform...
  • 4 篇 department of el...
  • 4 篇 department of el...
  • 4 篇 center for infor...
  • 4 篇 departamento de ...
  • 4 篇 center for robot...
  • 4 篇 department of co...
  • 4 篇 departamento de ...
  • 4 篇 department of el...
  • 4 篇 esstt tunis tuni...
  • 3 篇 international co...
  • 3 篇 department of co...
  • 3 篇 department of el...

作者

  • 13 篇 wen yu
  • 9 篇 n.j. bershad
  • 8 篇 k. nakayama
  • 8 篇 k.y. lee
  • 7 篇 h.k. kwan
  • 7 篇 j.c. principe
  • 7 篇 j.j. shynk
  • 6 篇 w.c. miller
  • 6 篇 n.k. loh
  • 6 篇 m.t. hagan
  • 6 篇 p. saratchandran
  • 6 篇 chin-teng lin
  • 6 篇 xiaoou li
  • 6 篇 k. hirasawa
  • 6 篇 n. sundararajan
  • 5 篇 g.v. puskorius
  • 5 篇 l.a. feldkamp
  • 5 篇 f. fnaiech
  • 5 篇 f. piazza
  • 5 篇 d.w. tufts

语言

  • 1,790 篇 英文
  • 96 篇 其他
  • 7 篇 中文
检索条件"主题词=Backpropagation Algorithms"
1893 条 记 录,以下是261-270 订阅
排序:
Stable dynamic backpropagation using constrained learning rate algorithm
Stable dynamic backpropagation using constrained learning ra...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Liang Jin M.M. Gupta P.N. Nikiforuk Intelligent Systems Research Laboratory College of Engineering University of Saskatchewan Saskatoon SAS Canada
An equilibrium point learning problem in discrete-time dynamic neural networks is studied in this paper using stable dynamic propagation with constrained learning rate algorithm. The new learning scheme provides an ad... 详细信息
来源: 评论
A new acceleration technique for the backpropagation algorithm
A new acceleration technique for the backpropagation algorit...
收藏 引用
International Conference on Neural Networks
作者: X. Yu N.K. Loh W.C. Miller Department of Electrical Engineering University of Windsor Windsor ONT Canada
An adaptive momentum algorithm which can update the momentum coefficient automatically in every iteration step is presented. The basic idea comes from the optimal gradient method. It is very difficult to obtain the op... 详细信息
来源: 评论
Performance Evaluation for Training a Distributed backpropagation Implementation
Performance Evaluation for Training a Distributed BackPropag...
收藏 引用
International Symposium on Applied Computational Intelligence and Informatics ( SACI)
作者: Sorin Babii Department of Computer and Software Engineering Politehnica University of Timişoara Timisoara Romania
This paper presents the results of some experiments in parallelizing the training phase of a feed-forward, artificial neural network. More specifically, we develop and analyze a parallelization strategy of the widely ... 详细信息
来源: 评论
Reducing the number of multiplies in backpropagation
Reducing the number of multiplies in backpropagation
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: K. Boonyanit A.M. Peterson LSI Logic Corporation Milpitas CA USA STAR Lab Department of Electrical Engineering University of Stanford Stanford CA USA
There have been many algorithms to speed up the learning time of backpropagation. However, most of them do not take into consideration the amount of hardware required to implement the algorithm. Without suitable hardw... 详细信息
来源: 评论
An automatic adjustment method of backpropagation learning parameters, using fuzzy inference
An automatic adjustment method of backpropagation learning p...
收藏 引用
International Symposium on Multiple-Valued Logic
作者: F. Ueno T. Inoue B.-u.-H. Baloch T. Yamamoto Department of Electrical Engineering and Computer Science Kumamoto University Kumamoto Japan Kure Works Babcock-Hitachi K.K. Hiroshima Japan
Fuzzy inference is introduced into a conventional backpropagation learning algorithm for neural networks. This procedure repeatedly adjusts the learning parameters and leads the system to convergence at the earliest p... 详细信息
来源: 评论
Content-based SMS spam filtering based on the Scaled Conjugate Gradient backpropagation algorithm
Content-based SMS spam filtering based on the Scaled Conjuga...
收藏 引用
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
作者: Waddah Waheeb Rozaida Ghazali Mustafa Mat Deris Computer Science Department Hodeidah University Hodeidah Alduraihimi Faculty of Computer Science and Information Technology Universiti Tun Hussein Onn Malaysia Batu Pahat Johor Universiti Tun Hussein Onn Malaysia Batu Pahat Johor MY
Content-based filtering is one of the most preferred methods to combat Short Message Service (SMS) spam. Memory usage and classification time are essential in SMS spam filtering, especially when working with limited r... 详细信息
来源: 评论
Genetic algorithm based pattern allocation schemes for training set parallelism in backpropagation neural networks
Genetic algorithm based pattern allocation schemes for train...
收藏 引用
IEEE International Conference on Evolutionary Computation
作者: Shou King Foo P. Saratchandran N. Sundararajan School of Electrical & Electronic Engineering Nanyang Technological University Singapore
Training set parallelization is an efficient method to optimize the training procedure performance of the backpropagation neural network algorithm. In training set parallelism, the training patterns are distributed &#... 详细信息
来源: 评论
Discovery of backpropagation learning rules using genetic programming
Discovery of backpropagation learning rules using genetic pr...
收藏 引用
IEEE International Conference on Evolutionary Computation
作者: A. Radi R. Poli School of Computer Science University of Binningham Birmingham UK
The backpropagation learning rule is widespread computational method for training multilayer networks. Unfortunately, backpropagation suffers from several problems. The authors have used genetic programming (GP) to ov... 详细信息
来源: 评论
A backpropagation algorithm which automatically determines the number of association units
A backpropagation algorithm which automatically determines t...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: K. Murase Y. Matsunaga Y. Nakade Department of Information Science Fukui University of Technology Fukui Japan
Presents a modified backpropagation algorithm which iteratively cuts out or adds association units during the learning process, and which is expected to form networks with the minimal number of association units for g... 详细信息
来源: 评论
Nonmonotone methods for backpropagation training with adaptive learning rate
Nonmonotone methods for backpropagation training with adapti...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: V.P. Palgianakos M.N. Vrahatis G.D. Magoulas Dept. of Math. Patras Univ. Greece Department of Mathematics U.P. Artificial Intelligence Research Center-UPAIRC University of Patras Patras Greece Department of Informatics U.P. Artificial Intelligence Research Center-UPAIRC University of Athens (NKUA) Athens Greece
We present nonmonotone methods for feedforward neural network training, i.e., training methods in which error function values are allowed to increase at some iterations. More specifically, at each epoch we impose that... 详细信息
来源: 评论