咨询与建议

限定检索结果

文献类型

  • 1,679 篇 会议
  • 213 篇 期刊文献

馆藏范围

  • 1,892 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 159 篇 计算机科学与技术...
    • 157 篇 电气工程
    • 62 篇 控制科学与工程
    • 46 篇 电子科学与技术(可...
    • 30 篇 软件工程
    • 21 篇 信息与通信工程
    • 14 篇 机械工程
    • 13 篇 仪器科学与技术
    • 6 篇 测绘科学与技术
    • 6 篇 生物医学工程(可授...
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
    • 3 篇 核科学与技术
    • 3 篇 网络空间安全
    • 2 篇 力学(可授工学、理...
    • 2 篇 石油与天然气工程
    • 2 篇 船舶与海洋工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 生物工程
  • 49 篇 理学
    • 15 篇 物理学
    • 12 篇 系统科学
    • 9 篇 数学
    • 6 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 化学
  • 39 篇 管理学
    • 37 篇 管理科学与工程(可...
  • 14 篇 医学
    • 10 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 4 篇 农学
    • 3 篇 作物学
  • 2 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 1,892 篇 backpropagation ...
  • 1,270 篇 neural networks
  • 463 篇 artificial neura...
  • 453 篇 neurons
  • 327 篇 multi-layer neur...
  • 297 篇 convergence
  • 289 篇 feedforward neur...
  • 211 篇 multilayer perce...
  • 197 篇 computer network...
  • 191 篇 testing
  • 126 篇 algorithm design...
  • 125 篇 pattern recognit...
  • 122 篇 computer science
  • 119 篇 intelligent netw...
  • 112 篇 recurrent neural...
  • 110 篇 equations
  • 107 篇 fuzzy neural net...
  • 106 篇 training data
  • 100 篇 control systems
  • 100 篇 signal processin...

机构

  • 12 篇 school of electr...
  • 11 篇 department of el...
  • 9 篇 department of el...
  • 7 篇 department of el...
  • 5 篇 at and t bell la...
  • 5 篇 computer science...
  • 5 篇 faculty of engin...
  • 4 篇 school of inform...
  • 4 篇 department of el...
  • 4 篇 department of el...
  • 4 篇 center for infor...
  • 4 篇 departamento de ...
  • 4 篇 center for robot...
  • 4 篇 department of co...
  • 4 篇 departamento de ...
  • 4 篇 department of el...
  • 4 篇 esstt tunis tuni...
  • 3 篇 international co...
  • 3 篇 department of co...
  • 3 篇 department of el...

作者

  • 13 篇 wen yu
  • 9 篇 n.j. bershad
  • 8 篇 k. nakayama
  • 8 篇 k.y. lee
  • 7 篇 h.k. kwan
  • 7 篇 j.c. principe
  • 7 篇 j.j. shynk
  • 6 篇 w.c. miller
  • 6 篇 n.k. loh
  • 6 篇 m.t. hagan
  • 6 篇 p. saratchandran
  • 6 篇 chin-teng lin
  • 6 篇 xiaoou li
  • 6 篇 k. hirasawa
  • 6 篇 n. sundararajan
  • 5 篇 g.v. puskorius
  • 5 篇 l.a. feldkamp
  • 5 篇 f. fnaiech
  • 5 篇 f. piazza
  • 5 篇 d.w. tufts

语言

  • 1,789 篇 英文
  • 96 篇 其他
  • 7 篇 中文
检索条件"主题词=Backpropagation Algorithms"
1892 条 记 录,以下是371-380 订阅
排序:
Improving the Convergence of backpropagation by Opposite Transfer Functions
Improving the Convergence of Backpropagation by Opposite Tra...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: M. Ventresca H.R. Tizhoosh Pattern Analysis and Machine Intelligence (PAMI) laboratory in the Systems Design Engineering Department University of Waterloo Waterloo ONT Canada
The backpropagation algorithm is a very popular approach to learning in feed-forward multi-layer perceptron networks. However, in many scenarios the time required to adequately learn the task is considerable. Many exi... 详细信息
来源: 评论
Using fast backpropagation algorithms for impulsive noise reduction from highly distorted images
Using fast backpropagation algorithms for impulsive noise re...
收藏 引用
Midwest Symposium on Circuits and Systems (MWSCAS)
作者: E. Besdok M. Alci P. Civicioglu Institute of Science Computer Engineering Department Erciyes University Kayseri Turkey Engineering Faculty Electronic Engineering Department Erciyes University Kayseri Turkey
A new impulsive noise elimination filter, which is based on fast backpropagation algorithms, is proposed in this paper. The simulation results show that the proposed filter achieves a superior performance over the oth... 详细信息
来源: 评论
INFERENCE OF OIL CONTENT IN PETROLEUM WAXES BY ARTIFICIAL NEURAL NETWORKS
收藏 引用
IFAC Proceedings Volumes 2006年 第2期39卷 759-764页
作者: Anie D.M. Lima Danilo do C.S. Silva Valéria S. Silva De Souza B. Maurício Research And Development Center (CENPES) Lubricants and Special Products PETROBRAS Rio de Janeiro Brazil School of Chemistry Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
The reduction of the time required to determine oil content is important in the production of petroleum waxes. Here, it is aimed to generate a model whose output (the inferred oil content) is obtained from inputs give... 详细信息
来源: 评论
Estimating Snow Water Equivalent from Satellite Passive and Active Microwave Sensors
Estimating Snow Water Equivalent from Satellite Passive and ...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: M. Brogioni G. Macelloni S. Paloscia P. Pampaloni S. Pettinato E. Santi CNR-IFAC Florence Italy
来源: 评论
Wavenet Based Modeling of Vehicle Suspension System
Wavenet Based Modeling of Vehicle Suspension System
收藏 引用
Annual Conference of Industrial Electronics Society
作者: Yul Y. Nazaruddin Yuliati Department of Engineering Physics Institut Teknologi Bandung Bandung Indonesia Electrical Engineering Department Widya Mandala Surabaya Catholic University Surabaya Indonesia
An alternative modeling technique of vehicle suspension system which is based on an integration between wavelet theory and artificial neural network, or wavelet network (wavenet) is presented. Wavenet is a single hidd... 详细信息
来源: 评论
Combining Gradient and Evolutionary Approaches to the Artificial Neural Networks Training According to Principles of Support Vector Machines
Combining Gradient and Evolutionary Approaches to the Artifi...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: M. Bundzel P. Sincak Department of Cybernetics and Artificial Intelligence Technical University of Košice Letna Slovakia
A gradient based learning for ANN training in pattern recognition tasks and a genetic approach for ANN pruning are proposed in this paper. The goal is to achieve a wide margin classifier the Vapnik-Chevornenkis (VC) d... 详细信息
来源: 评论
Robust Pruning of RBF Network for Neural Tracking Control Systems
Robust Pruning of RBF Network for Neural Tracking Control Sy...
收藏 引用
IEEE Conference on Decision and Control
作者: Jie Ni Qing Song M.J. Grimble School of Electrical and Electronic Engineering Nanyang Technological University Singapore Department of Electronic and Electrical Engineering University of Strathclyde UK
It is difficult to determine the number of nodes that should be used in a neural network. An adaptive method is proposed whereby the initial select is based on the largest expected number and the algorithm then "... 详细信息
来源: 评论
Short-Term System Marginal Price Forecasting Using System-Type Neural Network Architecture
Short-Term System Marginal Price Forecasting Using System-Ty...
收藏 引用
IEEE PES Power Systems Conference and Exposition, PSCE
作者: Byounghee Kim John P. Velas Jeongkyu Lee Jongbae Park Joongrin Shin Kwang Y. Lee Electrical Engineering Department Pennsylvania State University University Park PA USA Electrical Engineering Department Konkuk University Seoul South Korea
Neural networks have been applied in various new ways to the problem of short-term load and electricity price forecasting for power systems. Virtually all of these methods are based on using statistical patterns, whic... 详细信息
来源: 评论
A Novel BP Algorithm Based on Self-adaptive Parameters and Performance Analysis
A Novel BP Algorithm Based on Self-adaptive Parameters and P...
收藏 引用
International Conference on Innovative Computing, Information and Control (ICICIC)
作者: Haibin Cai Liangxu Liu Qiying Cao College of Information Science and Technology Donghua Uinversity Shanghai China
The standard back-propagation(BP) algorithm converges slowly and is easy to trap into local minimum, which is the main reason why it cannot be used widely in practical applications. Therefore, a new BP algorithm based... 详细信息
来源: 评论
A new on-line self-constructing neural fuzzy network
A new on-line self-constructing neural fuzzy network
收藏 引用
IEEE Conference on Decision and Control
作者: Andres Ferreyra Jose de Jesus Rubio Departamento de Electrónica Sección de Intrumentación Universidad Autonoma Metropolitana Azcapotzalco Mexicali Mexico Departamento de Electrónica Sección de Intrumentación México D.F. México
In this paper, we propose a new on-line self-constructing neural fuzzy network. Structure and parameter learning are updated at the same time in our algorithm, because there is no difference between them. It generates... 详细信息
来源: 评论