咨询与建议

限定检索结果

文献类型

  • 1,679 篇 会议
  • 213 篇 期刊文献

馆藏范围

  • 1,892 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 159 篇 计算机科学与技术...
    • 157 篇 电气工程
    • 62 篇 控制科学与工程
    • 46 篇 电子科学与技术(可...
    • 30 篇 软件工程
    • 21 篇 信息与通信工程
    • 14 篇 机械工程
    • 13 篇 仪器科学与技术
    • 6 篇 测绘科学与技术
    • 6 篇 生物医学工程(可授...
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
    • 3 篇 核科学与技术
    • 3 篇 网络空间安全
    • 2 篇 力学(可授工学、理...
    • 2 篇 石油与天然气工程
    • 2 篇 船舶与海洋工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 生物工程
  • 49 篇 理学
    • 15 篇 物理学
    • 12 篇 系统科学
    • 9 篇 数学
    • 6 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 化学
  • 39 篇 管理学
    • 37 篇 管理科学与工程(可...
  • 14 篇 医学
    • 10 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 4 篇 农学
    • 3 篇 作物学
  • 2 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 1,892 篇 backpropagation ...
  • 1,270 篇 neural networks
  • 463 篇 artificial neura...
  • 453 篇 neurons
  • 327 篇 multi-layer neur...
  • 297 篇 convergence
  • 289 篇 feedforward neur...
  • 211 篇 multilayer perce...
  • 197 篇 computer network...
  • 191 篇 testing
  • 126 篇 algorithm design...
  • 125 篇 pattern recognit...
  • 122 篇 computer science
  • 119 篇 intelligent netw...
  • 112 篇 recurrent neural...
  • 110 篇 equations
  • 107 篇 fuzzy neural net...
  • 106 篇 training data
  • 100 篇 control systems
  • 100 篇 signal processin...

机构

  • 12 篇 school of electr...
  • 11 篇 department of el...
  • 9 篇 department of el...
  • 7 篇 department of el...
  • 5 篇 at and t bell la...
  • 5 篇 computer science...
  • 5 篇 faculty of engin...
  • 4 篇 school of inform...
  • 4 篇 department of el...
  • 4 篇 department of el...
  • 4 篇 center for infor...
  • 4 篇 departamento de ...
  • 4 篇 center for robot...
  • 4 篇 department of co...
  • 4 篇 departamento de ...
  • 4 篇 department of el...
  • 4 篇 esstt tunis tuni...
  • 3 篇 international co...
  • 3 篇 department of co...
  • 3 篇 department of el...

作者

  • 13 篇 wen yu
  • 9 篇 n.j. bershad
  • 8 篇 k. nakayama
  • 8 篇 k.y. lee
  • 7 篇 h.k. kwan
  • 7 篇 j.c. principe
  • 7 篇 j.j. shynk
  • 6 篇 w.c. miller
  • 6 篇 n.k. loh
  • 6 篇 m.t. hagan
  • 6 篇 p. saratchandran
  • 6 篇 chin-teng lin
  • 6 篇 xiaoou li
  • 6 篇 k. hirasawa
  • 6 篇 n. sundararajan
  • 5 篇 g.v. puskorius
  • 5 篇 l.a. feldkamp
  • 5 篇 f. fnaiech
  • 5 篇 f. piazza
  • 5 篇 d.w. tufts

语言

  • 1,789 篇 英文
  • 96 篇 其他
  • 7 篇 中文
检索条件"主题词=Backpropagation Algorithms"
1892 条 记 录,以下是571-580 订阅
排序:
Fuzzy neural modeling using stable learning algorithm
Fuzzy neural modeling using stable learning algorithm
收藏 引用
American Control Conference (ACC)
作者: Wen Yu Xiaoou Li Departamento de Control Automatico CINVESTAV-IPN México D.F. México Sección de Computación CINVESTAV-IPN México D.F México
In general, fuzzy neural networks cannot match nonlinear systems exactly. Unmodeled dynamic can lead parameters drive and even instability problem. Some robust modifications must be contained, in order to guarantee Ly... 详细信息
来源: 评论
Application of neural fuzzy network to pulse compression with binary phase code
Application of neural fuzzy network to pulse compression wit...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
作者: Fun-Bin Duh Chia-Feng Juang Chin-Teng Lin Department of Electrical and Control Engineering of Electrical Engineering National Chiao Tung University Hsinchu Taiwan Department of Electrical Engineering National Chung Hsing University Taichung Taiwan
To solve the existing dilemma between making good range resolution and maintaining the low average transmitted power, it is necessary for the pulse compression processing to give low range sidelobes in the modern high... 详细信息
来源: 评论
An adaptive RBFN-based filter for adaptive noise cancellation
An adaptive RBFN-based filter for adaptive noise cancellatio...
收藏 引用
IEEE Conference on Decision and Control
作者: Zhengrong Li Meng Joo Er Yang Gao School of Electrical and Electronic Engineering Nanyang Technological University Singapore
In this paper, a new adaptive radial-basis-function-networks- (RBFN-) based filter for the adaptive noise cancellation (AXC) problem is proposed. The algorithm of structure identification and parameters adjustment is ... 详细信息
来源: 评论
A pruning algorithm for training neural network ensembles
A pruning algorithm for training neural network ensembles
收藏 引用
SICE Annual Conference
作者: Md. Shahjahan M.A.H. Akhand K. Murase Fukui University Fukui-shi Japan Bangladesh Institute of Technology Khulna Bangladesh Bangladesh Institute of Technology(BIT) Khulna Bangladesh Fukui University of Technology Fukui Japan
This paper presents a pruning algorithm i.e., dynamic ensemble pruning algorithm (DEPA) by utilizing the knowledge of overfilling and importance of hidden node. The generalization performance of a machine learner depe... 详细信息
来源: 评论
An application of SMC theory for experimental learning control of robotic manipulators
An application of SMC theory for experimental learning contr...
收藏 引用
IEEE International Workshop on Intelligent Robots and Systems (IROS)
作者: U. Yildiran O. Kaynak Electrical and Eletronics Engineering Department Bogazici University Istanbul Turkey
Complexity of learning dynamics constitutes a prime difficulty in online neurocontrol schemes involving gradient computations in parameter update rules. This is because such complexities can make closed loop system se... 详细信息
来源: 评论
Self-organizing neural networks by dynamic and spatial changing weights
Self-organizing neural networks by dynamic and spatial chang...
收藏 引用
International Symposium on Uncertainty Modeling and Analysis (ISUMA)
作者: N. Homma M.M. Gupta M. Yoshizawa K. Abe College of Medical Sciences University of Tohoku Sendai Japan College of Engineering University of Saskatchewan Saskatoon SAS Canada Information Synergy Center University of Tohoku Sendai Japan Graduate School of Engineering University of Tohoku Sendai Japan
We propose a self-organizing neural structure with dynamic and spatial changing weights for forming a feature space representation of concepts. An essential core of this self-organization is an appropriate combination... 详细信息
来源: 评论
A learning multi-agent system for personalized information filtering
A learning multi-agent system for personalized information f...
收藏 引用
International Conference on Information, Communications and Signal Processing
作者: Junhua Chen Zhonghua Yang Information Communication Institute of Singapore (ICIS) School of Electrical and Electronic Engineering Nanyang Technological University Singapore
A multi-agent hybrid learning approach to the problem of personalized information filtering is proposed in this paper. There are four agents in the multi-agent model. The problem is modeled as Monte Carlo reinforcemen... 详细信息
来源: 评论
A fast electric load forecasting using adaptive neural networks
A fast electric load forecasting using adaptive neural netwo...
收藏 引用
Power Tech Conference
作者: M.L.M. Lopes A.D.P. Lotufo C.R. Minussi UNESP Ilha Solteira Sao Paulo Brazil
This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the backpropagation algorithm. The neural network architecture is formulated by two para... 详细信息
来源: 评论
Tuning complex fuzzy systems by supervised learning algorithms
Tuning complex fuzzy systems by supervised learning algorith...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
作者: F.J. Moreno-Velo I. Baturone R. Senhadji S. Sanchez-Solano Centro Nacional de Microelectronica-CSIC Instituto de Microelectronica de Sevilla (CNM-CSIC) Seville Spain
Tuning a fuzzy system to meet a given set of input/output patterns is usually a difficult task that involves many parameters. This paper presents an study of different approaches that can be applied to perform this tu... 详细信息
来源: 评论
Intelligent modeling for hysteresis nonlinearity
Intelligent modeling for hysteresis nonlinearity
收藏 引用
IEEE International Symposium on Intelligent Control (ISIC)
作者: Chuntao Li Yonghong Tan A0103021 Department of Automation Shanghai Jiaotong University Shanghai China Department of computer Guilin Institute of Electronic Technology Guilin China
It is known that hysteresis is a non-differentiable nonlinearity with multi-value mapping. The neural networks, however, can only be applied to modeling the function with one-to-one mapping. Under a mild assumption, t... 详细信息
来源: 评论