咨询与建议

限定检索结果

文献类型

  • 1,679 篇 会议
  • 213 篇 期刊文献

馆藏范围

  • 1,892 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 159 篇 计算机科学与技术...
    • 157 篇 电气工程
    • 62 篇 控制科学与工程
    • 46 篇 电子科学与技术(可...
    • 30 篇 软件工程
    • 21 篇 信息与通信工程
    • 14 篇 机械工程
    • 13 篇 仪器科学与技术
    • 6 篇 测绘科学与技术
    • 6 篇 生物医学工程(可授...
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
    • 3 篇 核科学与技术
    • 3 篇 网络空间安全
    • 2 篇 力学(可授工学、理...
    • 2 篇 石油与天然气工程
    • 2 篇 船舶与海洋工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 生物工程
  • 49 篇 理学
    • 15 篇 物理学
    • 12 篇 系统科学
    • 9 篇 数学
    • 6 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 化学
  • 39 篇 管理学
    • 37 篇 管理科学与工程(可...
  • 14 篇 医学
    • 10 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 4 篇 农学
    • 3 篇 作物学
  • 2 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 1,892 篇 backpropagation ...
  • 1,270 篇 neural networks
  • 463 篇 artificial neura...
  • 453 篇 neurons
  • 327 篇 multi-layer neur...
  • 297 篇 convergence
  • 289 篇 feedforward neur...
  • 211 篇 multilayer perce...
  • 197 篇 computer network...
  • 191 篇 testing
  • 126 篇 algorithm design...
  • 125 篇 pattern recognit...
  • 122 篇 computer science
  • 119 篇 intelligent netw...
  • 112 篇 recurrent neural...
  • 110 篇 equations
  • 107 篇 fuzzy neural net...
  • 106 篇 training data
  • 100 篇 control systems
  • 100 篇 signal processin...

机构

  • 12 篇 school of electr...
  • 11 篇 department of el...
  • 9 篇 department of el...
  • 7 篇 department of el...
  • 5 篇 at and t bell la...
  • 5 篇 computer science...
  • 5 篇 faculty of engin...
  • 4 篇 school of inform...
  • 4 篇 department of el...
  • 4 篇 department of el...
  • 4 篇 center for infor...
  • 4 篇 departamento de ...
  • 4 篇 center for robot...
  • 4 篇 department of co...
  • 4 篇 departamento de ...
  • 4 篇 department of el...
  • 4 篇 esstt tunis tuni...
  • 3 篇 international co...
  • 3 篇 department of co...
  • 3 篇 department of el...

作者

  • 13 篇 wen yu
  • 9 篇 n.j. bershad
  • 8 篇 k. nakayama
  • 8 篇 k.y. lee
  • 7 篇 h.k. kwan
  • 7 篇 j.c. principe
  • 7 篇 j.j. shynk
  • 6 篇 w.c. miller
  • 6 篇 n.k. loh
  • 6 篇 m.t. hagan
  • 6 篇 p. saratchandran
  • 6 篇 chin-teng lin
  • 6 篇 xiaoou li
  • 6 篇 k. hirasawa
  • 6 篇 n. sundararajan
  • 5 篇 g.v. puskorius
  • 5 篇 l.a. feldkamp
  • 5 篇 f. fnaiech
  • 5 篇 f. piazza
  • 5 篇 d.w. tufts

语言

  • 1,789 篇 英文
  • 96 篇 其他
  • 7 篇 中文
检索条件"主题词=Backpropagation Algorithms"
1892 条 记 录,以下是871-880 订阅
排序:
Recognition of unconstrained handwritten digits using modified chaotic neural networks
Recognition of unconstrained handwritten digits using modifi...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Han-Go Choi Jae-Heung Cho Sang-Hee Kim Sang-Jae Lee School of Electronic Engineering Kum-Oh National University of Technology South Korea
This paper describes an off-line method for recognizing totally unconstrained handwritten digits using modified chaotic neural networks (CNN). Since the CNN has inherently the characteristics of highly nonlinear dynam... 详细信息
来源: 评论
Preconditioning method to accelerate neural networks gradient training algorithms
Preconditioning method to accelerate neural networks gradien...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: M.J. Perez-Ilzarbe Dpto de Automática y Computación Universidad PÙblica de Navarra Pamplona Spain
In this work a simple method for conditioning neural networks gradient training algorithms is presented. It consists of using a different learning rate for the outgoing weights of each one of the neurons or network in... 详细信息
来源: 评论
High bandwidth direct adaptive neurocontrol of induction motor current and speed using continual online random weight change training
High bandwidth direct adaptive neurocontrol of induction mot...
收藏 引用
Annual IEEE Conference on Power Electronics Specialists (PESC)
作者: B. Burton R.G. Harley T.G. Habetler Department of Electrical Engineering University of Natal Durban South Africa Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta GA USA
This paper reports on direct adaptive neurocontrol of induction motors using the random weight change (RWC) training algorithm for continually online trained (COT) neural network (NN) ASICs. A previous practical imple... 详细信息
来源: 评论
Adaptive critic neural network for feedforward compensation
Adaptive critic neural network for feedforward compensation
收藏 引用
American Control Conference (ACC)
作者: J. Campos F.L. Lewis Automation and Robotics Research Institute University of Technology Fort Worth TX USA
The paper is concerned with the application of adaptive critic techniques to feedback control of nonlinear systems using neural networks (NN). No initial model for the nonlinear system is necessary. The work shows how... 详细信息
来源: 评论
The Hausdorff distance measure for feature selection in learning applications
The Hausdorff distance measure for feature selection in lear...
收藏 引用
Annual Hawaii International Conference on System Sciences (HICSS)
作者: S. Piramuthu Operations and Information Management The Wharton School University of Pennsylvania Philadelphia PA USA
Recent advances in computing technology in terms of speed, cost, as well as access to tremendous amounts of computing power and the ability to process huge amounts of data in reasonable time has spurred increased inte... 详细信息
来源: 评论
Acceleration of learning in feedforward networks using dynamical systems analysis and matrix perturbation theory
Acceleration of learning in feedforward networks using dynam...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: N. Ampazis S.J. Perantonis J.G. Taylor National Center for Scientific Research DEMOKRITOS Institute of Informatics and Telecommunications Athens Greece Department of Mathematics King''s College London UK
For the explanation of the dynamical behavior of learning in feedforward networks, the recent work by the authors (1999) has focused on the derivation of a dynamical system model which is valid in the vicinity of temp... 详细信息
来源: 评论
Efficient algorithm for training neural networks with one hidden layer
Efficient algorithm for training neural networks with one hi...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: B.M. Wilamowski Yixin Chen A. Malinowski EE Department University of Wurzburg Laramie WY USA ECET Department Bradley University Peoria IL USA
Efficient second order algorithm for training feedforward neural networks is presented. The algorithm has a similar convergence rate as the Lavenberg-Marquardt (LM) method and it is less computationally intensive and ... 详细信息
来源: 评论
Comparative analysis of artificial neural network models: application in bankruptcy prediction
Comparative analysis of artificial neural network models: ap...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: C. Charalambous A. Charitou F. Kaourou Department of Business Administration University of Cyprus Nicosia Cyprus
This study compares the predictive performance of three neural network methods, namely the learning vector quantization, radial basis function, the feedforward network that uses the conjugate gradient optimization alg... 详细信息
来源: 评论
Medium term electric load forecasting using artificial neural networks
Medium term electric load forecasting using artificial neura...
收藏 引用
International Conference on Electric Power Engineering, PowerTech Budapest
作者: L. Varga Hungarian Power Companies Limited Hungary
In the paper artificial neural networks are applied to medium term electric load forecasting for the Hungarian Electric Power System. A feedforward multi-layer network with one hidden layer was applied using the error... 详细信息
来源: 评论
Recurrent neural gas in electric load forecasting
Recurrent neural gas in electric load forecasting
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: M.A. Teixeira G. Zaverucha V.N.A.L. da Silva G.F. Ribeiro Systems Engineering and Computer Science Program-Graduate Programs in Engineering Federal University of Rio de Janeiro Brazil Electric Power Research Center Brazil
We have proposed for the task of hourly electric load forecasting a hybrid neural system combining unsupervised and supervised learning. The system consists of a recurrent neural gas (RNG) network and many Elman neura... 详细信息
来源: 评论