Dendrobium officinale Kimura et Migo (Orchidaceae) is a traditional Chinese medicinal plant. The stem contains an alkaloid that is the primary bioactive component. However, the details of alkaloid biosynthesis have no...
详细信息
Dendrobium officinale Kimura et Migo (Orchidaceae) is a traditional Chinese medicinal plant. The stem contains an alkaloid that is the primary bioactive component. However, the details of alkaloid biosynthesis have not been effectively explored because of the limited number of expressed sequence tags (ESTs) available in GenBank. In this study, we analyzed RNA isolated from the stem of D. officinale using a single half-run on the Roche 454 GS FLX Titanium platform to generate 553,084 ESTs with an average length of 417 bases. The ESTs were assembled into 36,407 unique putative transcripts. A total of 69.97% of the unique sequences were annotated, and a detailed view of alkaloid biosynthesis was obtained. Functional assignment based on Kyoto Encyclopedia of Genes and Genomes (KEGG) terms revealed 69 unique sequences representing 25 genes involved in alkaloid backbone biosynthesis. A series of qRT-PCR experiments confirmed that the expression levels of 5 key enzyme-encoding genes involved in alkaloid biosynthesis are greater in the leaves of D. officinale than in the stems. Cytochrome P450s, aminotransferases, methyltransferases, multidrug resistance protein (MDR) transporters and transcription factors were screened for possible involvement in alkaloid biosynthesis. Furthermore, a total of 1061 simple sequence repeat motifs (SSR) were detected from 36,407 unigenes. Dinucleotide repeats were the most abundant repeat type. Of these, 179 genes were associated with a metabolic pathway in KEGG. This study is the first to produce a large volume of transcriptome data from D. officinale. It extends the foundation to facilitate gene discovery in D. officinale and provides an important resource for the molecular genetic and functional genomic studies in this species.
Somatic point mutations in isocitrate dehydrogenase 1/2 (IDH1/2) confer a gain-of-function in cancer cells resulting in the accumulation and secretion of an onco-metabolite, R (-)-2-hydroxyglutarate (2HG). High levels...
详细信息
Somatic point mutations in isocitrate dehydrogenase 1/2 (IDH1/2) confer a gain-of-function in cancer cells resulting in the accumulation and secretion of an onco-metabolite, R (-)-2-hydroxyglutarate (2HG). High levels of 2HG have been shown to inhibit α KG dependent dioxygenases including histone and DNA demethylases, which play a key role in regulating the epigenetic state of cells. Recently, ex vivo treatment with AGI-6780, a potent IDH2 R140Q inhibitor induced cellular differentiation of leukemic blast cells isolated from primary human AML patient samples harboring an IDH2 R140Q mutation. These data provided the first evidence that inhibition of mutant IDH2 can reverse the block in cellular differentiation conferred by high levels of 2HG and could provide a therapeutic benefit to patients. AG-221 is a potent and selective inhibitor of the IDH2 mutant enzyme and is currently being evaluated in a first-in-human study entitled: A Phase 1, Multicenter, Open-Label, Dose-Escalation, Safety, Pharmacokinetic, Pharmacodynamic, and Clinical Activity Study of Orally Administered AG-221 in Subjects with Advanced Hematologic Malignancies with an IDH2 Mutation. The compound has been demonstrated to reduce 2-HG levels by >90% and reverse histone and deoxyribonucleic acid (DNA) hypermethylation in vitro, and to induce differentiation in leukemia cell models. We evaluated the efficacy of AG-221 in a primary human AML xenograft model carrying the IDH2 R140Q mutation. This is an aggressive model with mortality from AML consistently occurring by day 80, following tail vein engraftment. Results show that AG-221 is able to potently reduce 2HG found in the bone marrow, plasma and urine of engrafted mice. Treatment also induced a dose dependent, statistically significant, survival benefit where all mice in the high dose treatment group survived to the end of study. We also saw a dose dependent proliferative burst of the human specific CD45+ blast cells followed by cellular differentiati
暂无评论