咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

主题

  • 1 篇 battery degradat...
  • 1 篇 remaining useful...
  • 1 篇 bat based optimi...
  • 1 篇 convolutional ne...
  • 1 篇 li-ion battery

机构

  • 1 篇 school of electr...
  • 1 篇 school of engine...
  • 1 篇 department of me...
  • 1 篇 department of co...

作者

  • 1 篇 li li
  • 1 篇 s. islam
  • 1 篇 md mehedi hasan
  • 1 篇 subrata. k. sark...
  • 1 篇 md f. ali
  • 1 篇 shahid a. hasib
  • 1 篇 dip k. saha

语言

  • 1 篇 英文
检索条件"主题词=Bat based optimization algorithm"
1 条 记 录,以下是1-10 订阅
排序:
Enhancing prediction accuracy of Remaining Useful Life in lithium-ion batteries: A deep learning approach with bat optimizer
Future Batteries
收藏 引用
Future batteries 2024年 2卷
作者: Shahid A. Hasib S. Islam Md F. Ali Subrata. K. Sarker Li Li Md Mehedi Hasan Dip K. Saha Department of Control & Instrumentation Engineering King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia Department of Mechatronics Engineering Rajshahi University of Engineering & Technology Bangladesh School of Electrical and Data Engineering University of Technology Sydney Australia School of Engineering & Informatics University of Sussex Brighton United Kingdom
Remaining Useful Life (RUL) prediction in lithium-ion batteries is crucial for assessing battery performance. Despite the popularity of deep learning methods for RUL prediction, their complex architectures often pose ... 详细信息
来源: 评论