咨询与建议

限定检索结果

文献类型

  • 58 篇 期刊文献
  • 46 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 105 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 91 篇 工学
    • 58 篇 电气工程
    • 46 篇 计算机科学与技术...
    • 29 篇 信息与通信工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 软件工程
    • 1 篇 动力工程及工程热...
    • 1 篇 测绘科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 22 篇 理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 数学
    • 6 篇 物理学
    • 2 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 化学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 6 篇 医学
    • 4 篇 临床医学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 艺术学

主题

  • 105 篇 baum-welch algor...
  • 38 篇 hidden markov mo...
  • 24 篇 viterbi algorith...
  • 21 篇 hidden markov mo...
  • 8 篇 hmm
  • 8 篇 hidden markov mo...
  • 6 篇 em algorithm
  • 4 篇 turbo codes
  • 4 篇 forward algorith...
  • 4 篇 iterative decodi...
  • 4 篇 machine learning
  • 4 篇 missing observat...
  • 3 篇 reliability
  • 3 篇 fault diagnosis
  • 3 篇 incomplete data
  • 3 篇 forward-backward...
  • 3 篇 power line commu...
  • 3 篇 fritchman model
  • 3 篇 genetic algorith...
  • 2 篇 non-convex optim...

机构

  • 4 篇 univ delaware de...
  • 3 篇 univ calif los a...
  • 2 篇 univ witwatersra...
  • 2 篇 sichuan agr univ...
  • 2 篇 usn undersea war...
  • 1 篇 escuela politecn...
  • 1 篇 univ bergen dept...
  • 1 篇 indian sch mines...
  • 1 篇 jiujiang univ sc...
  • 1 篇 um dae ctr excel...
  • 1 篇 pesit dept mca b...
  • 1 篇 national enginee...
  • 1 篇 ping an technol ...
  • 1 篇 harvard univ dea...
  • 1 篇 soochow univ sch...
  • 1 篇 panjab univ dept...
  • 1 篇 mvgr coll engn d...
  • 1 篇 sun moon univ de...
  • 1 篇 beijing lab of i...
  • 1 篇 national institu...

作者

  • 4 篇 cheng ling
  • 4 篇 garcia-frias j
  • 3 篇 familua ayokunle...
  • 3 篇 villasenor jd
  • 2 篇 leandry leonce
  • 2 篇 li ding
  • 2 篇 wang jian
  • 2 篇 jahan majid vafa...
  • 2 篇 li rong
  • 2 篇 mujuni egbert
  • 2 篇 jayaweera sudhar...
  • 2 篇 brun morten
  • 2 篇 barakat ghias
  • 2 篇 mureithi eunice ...
  • 1 篇 sujbert laszlo
  • 1 篇 kwong s
  • 1 篇 roy diptendu sin...
  • 1 篇 kocer umay uzuno...
  • 1 篇 gultyaeva tatyan...
  • 1 篇 behera abhishek

语言

  • 96 篇 英文
  • 7 篇 其他
  • 2 篇 中文
检索条件"主题词=Baum-welch algorithm"
105 条 记 录,以下是61-70 订阅
排序:
Modelling Emotion Dynamics on Twitter via Hidden Markov Model  21
Modelling Emotion Dynamics on Twitter via Hidden Markov Mode...
收藏 引用
21st International Conference on Information Integration and Web-Based Applications and Services (iiWAS)
作者: Naskar, Debashis Onaindia, Eva Rebollo, Miguel Das, Subhashis Univ Politecn Valencia Valencia Spain Univ Trento Trento Italy
Exploring the mechanism about users' emotion dynamics towards social events and further predicting their future emotions have attracted great attention to the researchers. One of the unexplored components of human... 详细信息
来源: 评论
TOWARD ROBUST LEARNING OF THE GAUSSIAN MIXTURE STATE EMISSION DENSITIES FOR HIDDEN MARKOV MODELS
TOWARD ROBUST LEARNING OF THE GAUSSIAN MIXTURE STATE EMISSIO...
收藏 引用
2010 IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Tang, Hao Hasegawa-Johnson, Mark Huang, Thomas S. Univ Illinois Dept Elect & Comp Engn Urbana IL 61801 USA
One important class of state emission densities of the hidden Markov model (HMM) is the Gaussian mixture densities. The classical baum-welch algorithm often fails to reliably learn the Gaussian mixture densities when ... 详细信息
来源: 评论
The Learning algorithms of Coupled Discrete Hidden Markov Models
The Learning Algorithms of Coupled Discrete Hidden Markov Mo...
收藏 引用
2nd International Conference on Information Technology and Management Innovation (ICITMI 2013)
作者: Du, Shi Ping Wang, Jian Wei, Yu Ming Sichuan Agr Univ Coll Life & Basic Sci Yaan 625014 Sichuan Peoples R China Sichuan Agr Univ Triticeae Res Inst Yaan 625014 Sichuan Peoples R China
A hidden Markov model (HMM) encompasses a large class of stochastic process models and has been successfully applied to a number of scientific and engineering problems, including speech and other pattern recognition p... 详细信息
来源: 评论
Training Hidden Markov Models on Incomplete Sequences  13
Training Hidden Markov Models on Incomplete Sequences
收藏 引用
13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE)
作者: Popov, Alexander A. Gultyaeva, Tatyana A. Uvarov, Vadim E. Novosibirsk State Tech Univ Dept Theoret & Appl Informat Novosibirsk Russia
This paper deals with the algorithms of training hidden Markov models on sequences with missing observations. The method of imputation using Viterbi algorithm and the method of marginalization of missing observations ... 详细信息
来源: 评论
Ocean Surface Stochastic Channel Modeling based on Hidden Markov Model  7
Ocean Surface Stochastic Channel Modeling based on Hidden Ma...
收藏 引用
7th IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)
作者: Jiang, Kaijie Pan, Dawei Jiang, Tao Yuan, Yuqi Harbin Engn Univ Coll Informat & Commun Engn Harbin Peoples R China Harbin Engn Univ Coll Automat Harbin Peoples R China
In this paper, we propose to apply Hidden Markov Model to modeling of microwave channel in sea surface. The microwave channel on the sea varies with the sea state, while the hidden -Markov model has enough universalit... 详细信息
来源: 评论
A Block Diagonal Markov Model for Indoor Software-Defined Power Line Communication
A Block Diagonal Markov Model for Indoor Software-Defined Po...
收藏 引用
IEEE PES/IAS PowerAfrica Conference
作者: Familua, Ayokunle Damilola Univ Johannesburg Ctr Telecommun Dept Elect & Elect Engn Sci Johannesburg South Africa
A Semi-Hidden Markov Model (SHMM) for bursty error channels is defined by a state transition probability matrix A, a prior probability vector Pi, and the state dependent output symbol error probability matrix B. Sever... 详细信息
来源: 评论
COMPLEXITY REDUCTION USING POWER-LAW BASED SCHEDULING FOR EXPLOITING SPATIAL CORRELATION IN DISTRIBUTED VIDEO CODING
COMPLEXITY REDUCTION USING POWER-LAW BASED SCHEDULING FOR EX...
收藏 引用
15th IEEE International Conference on Image Processing (ICIP 2008)
作者: Misra, Kiran Karande, Shirish Desai, Keyur Radha, Hayder Michigan State Univ Dept Elect & Comp Engn E Lansing MI 48824 USA
In pixel-domain distributed video coding (DVC), due to the largely translational nature of motion, residue errors in the side-information frame are often clustered together. These clusterings can be exploited to reduc... 详细信息
来源: 评论
N-best vector quantization for isolated word speech recognition
N-best vector quantization for isolated word speech recognit...
收藏 引用
Annual Conference on the Society-of-Instrument-and-Control-Engineers
作者: Nose, Masaya Maki, Shuichi Yartiane, Noburnoto Morikawa, Yoshitaka Okayama Univ Grad Sch Nat Sci & Technol Okayama Japan
Speech recognition is performed by utilizing acoustic and linguistic model. The contribution of this paper is improvement of acoustic model. Acoustic model is constructed by hidden Markov model (HMM). HMM has two repr... 详细信息
来源: 评论
Reinforcement Learning aided Smart-home Decision-making in an Interactive Smart Grid
Reinforcement Learning aided Smart-home Decision-making in a...
收藏 引用
IEEE Green Energy and Systems Conference (IGESC)
作者: Li, Ding Jayaweera, Sudharman K. Univ New Mexico Dept Elect & Comp Engn Albuquerque NM 87131 USA
In this paper, a complete hierarchical architecture is presented for the Utility-customer interaction, which tightly connect several important research topics, such as customer load prediction, renewable generation in... 详细信息
来源: 评论
A Comparison of Some Methods for Training Hidden Markov Models on Sequences with Missing Observations  11
A Comparison of Some Methods for Training Hidden Markov Mode...
收藏 引用
11th International Forum on Strategic Technology (IFOST)
作者: Popov, Alexander Gultyaeva, Tatyana Uvarov, Vadim Novosibirsk State Tech Univ Dept Appl Math & Comp Sci Novosibirsk Russia
The three approaches to the problem of hidden Markov models training on sequences with missing observations are discussed: marginalization of missing observations, gluing of available parts of the sequence and trainin... 详细信息
来源: 评论