咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 28 篇 会议

馆藏范围

  • 60 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 43 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 6 篇 控制科学与工程
    • 4 篇 软件工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 2 篇 土木工程
    • 2 篇 测绘科学与技术
    • 2 篇 石油与天然气工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 化学工程与技术
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 14 篇 理学
    • 7 篇 数学
    • 5 篇 生物学
    • 2 篇 地理学
    • 2 篇 地球物理学
    • 1 篇 化学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 6 篇 医学
    • 3 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 艺术学

主题

  • 60 篇 bayesian network...
  • 5 篇 data mining
  • 4 篇 combination meth...
  • 4 篇 boosting
  • 3 篇 structure learni...
  • 3 篇 discriminative l...
  • 2 篇 multi-label clas...
  • 2 篇 binary relevance
  • 2 篇 averaged one-dep...
  • 2 篇 expressive power
  • 2 篇 ensemble learnin...
  • 2 篇 ban
  • 2 篇 social spam disc...
  • 2 篇 public safety
  • 2 篇 probabilistic in...
  • 2 篇 chain classifier
  • 2 篇 crowd event
  • 2 篇 social network s...
  • 2 篇 conditional mutu...
  • 2 篇 pattern recognit...

机构

  • 9 篇 jilin univ coll ...
  • 7 篇 jilin univ key l...
  • 5 篇 jilin univ coll ...
  • 3 篇 jilin univ coll ...
  • 3 篇 shenyang normal ...
  • 3 篇 jilin univ minis...
  • 2 篇 beijing acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 natl univ singap...
  • 2 篇 emc labs china p...
  • 2 篇 petrochina res i...
  • 1 篇 univ valencia va...
  • 1 篇 arizona state un...
  • 1 篇 ecole polytech m...
  • 1 篇 european ctr sof...
  • 1 篇 huaqiao univ col...
  • 1 篇 ta hwa inst tech...
  • 1 篇 n china elect po...
  • 1 篇 seoul natl univ ...
  • 1 篇 vrije univ bruss...

作者

  • 10 篇 wang limin
  • 3 篇 zhou hongbo
  • 3 篇 li kuo
  • 3 篇 sun xiaowei
  • 3 篇 wu wei-wen
  • 3 篇 li qilong
  • 2 篇 poon leonard k. ...
  • 2 篇 liu yang
  • 2 篇 guo lu
  • 2 篇 wei junyang
  • 2 篇 pernkopf franz
  • 2 篇 mammadov musa
  • 2 篇 sun minghui
  • 2 篇 bielza concha
  • 2 篇 lee yu-ting
  • 2 篇 zhang nevin l.
  • 2 篇 wohlmayr michael
  • 2 篇 varando gherardo
  • 2 篇 pang meng
  • 2 篇 larranaga pedro

语言

  • 57 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Bayesian Network Classifier"
60 条 记 录,以下是1-10 订阅
排序:
Classification of 10 m-resolution SPOT data using a combined bayesian network classifier-shape adaptive neighborhood method
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2012年 72卷 36-45页
作者: Yang, Jingxue Wang, Yunpeng Chinese Acad Sci Guangzhou Inst Geochem State Key Lab Organ Geochem Guangzhou 510640 Peoples R China
A hybrid inversion method that combines a bayesian network classifier (BNC) with shape adaptive neighborhoods (SANS) is proposed for the classification of 10-m resolution remote sensing images. BNC uses a directed acy... 详细信息
来源: 评论
A novel approach to fully representing the diversity in conditional dependencies for learning bayesian network classifier
收藏 引用
INTELLIGENT DATA ANALYSIS 2021年 第1期25卷 35-55页
作者: Wang, Limin Chen, Peng Chen, Shenglei Sun, Minghui Jilin Univ Coll Comp Sci & Technol Changchun 130012 Jilin Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun Jilin Peoples R China Nanjing Audit Univ Sch Econ Nanjing Jiangsu Peoples R China
bayesian network classifiers (BNCs) have proved their effectiveness and efficiency in the supervised learning framework. Numerous variations of conditional independence assumption have been proposed to address the iss... 详细信息
来源: 评论
Efficient heuristics for learning scalable bayesian network classifier from labeled and unlabeled data
收藏 引用
APPLIED INTELLIGENCE 2024年 第2期54卷 1957-1979页
作者: Wang, Limin Wang, Junjie Guo, Lu Li, Qilong Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China Jilin Univ Coll Software Changchun 130012 Peoples R China Jilin Univ Coll Instrumentat & Elect Engn Changchun 130012 Peoples R China
Naive Bayes (NB) is one of the top ten machine learning algorithms whereas its attribute independence assumption rarely holds in practice. A feasible and efficient approach to improving NB is relaxing the assumption b... 详细信息
来源: 评论
Crowd formation detection using bayesian network classifier
Crowd formation detection using Bayesian network classifier
收藏 引用
International Conference on Information Technology and Industrial Engineering
作者: Wang, Zhongfeng Ding, Hui Zhang, Hui Beijing Municipal Inst Labor Protect Beijing Peoples R China Beijing Acad Sci & Technol Beijing Peoples R China Tsinghua Univ Inst Publ Safety Res Dept Engn Phys Beijing Peoples R China
Crowd event recognition is a basic task in the field of crowd management. In this paper, we present a novel approach for recognition of crowd formation event. Instead of developing general crowd behavior models, our m... 详细信息
来源: 评论
Efficient Learning of General bayesian network classifier by Local and Adaptive Search
Efficient Learning of General Bayesian Network Classifier by...
收藏 引用
IEEE International Conference on Data Science & Advanced Analytics
作者: Minn, Sein Fu, Shunkai Desmarais, Michel C. Huaqiao Univ Coll Comp Sci & Technol Xiamen 351021 Peoples R China Ecole Polytech Montreal Dept Comp Engn Montreal PQ H3C 3A7 Canada
General bayesian network classifier (GBNC) contains only features necessary for classification, so an ideal structure learning solution is to learn GBNC without having to learn the whole bayesian network (BN). A local... 详细信息
来源: 评论
Cost Overrun Risk Assessment and Prediction in Construction Projects: A bayesian network classifier Approach
收藏 引用
BUILDINGS 2022年 第10期12卷 1660-1660页
作者: Ashtari, Mohammad Amin Ansari, Ramin Hassannayebi, Erfan Jeong, Jaewook Imam Khomeini Int Univ Dept Civil Engn Qazvin *** Iran Sharif Univ Technol Dept Ind Engn Tehran 111558639 Iran Seoul Natl Univ Sci & Technol Dept Safety Engn 232 Gongneung Ro Seoul 01811 South Korea
Cost overrun risks are declared to be dynamic and interdependent. Ignoring the relationship between cost overrun risks during the risk assessment process is one of the primary reasons construction projects go over bud... 详细信息
来源: 评论
Risk prediction for petroleum exploration based on bayesian network classifier
GEOENERGY SCIENCE AND ENGINEERING
收藏 引用
GEOENERGY SCIENCE AND ENGINEERING 2023年 228卷
作者: Ren, Hongjia Guo, Qiulin Cao, Zhenglin Ren, Hongbo Yanshan Univ Sch Informat Sci & Engn Qinhuangdao 066004 Peoples R China Key Lab Comp Virtual Technol & Syst Integrat Hebei Qinhuangdao 066004 Peoples R China PetroChina Res Inst Petr Explorat & Dev Beijing 100083 Peoples R China Beijing Jingdong Century Trading Co Ltd Beijing 100083 Peoples R China
Effective prediction of petroleum exploration risks is critical for boosting oil and gas extraction efficiency and increasing economic benefits. To improve the accuracy and efficiency of risk prediction, this paper pr... 详细信息
来源: 评论
Learning semi-lazy bayesian network classifier under the c.i.i.d assumption
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2020年 208卷 106422-106422页
作者: Liu, Yang Wang, Limin Mammadov, Musa Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China Deakin Univ Sch Informat Technol Burwood Vic 3125 Australia
bayesian network classifiers (BNCs) are powerful tools in knowledge representation and inference under conditions of uncertainty. In contrast to eager learning, lazy learning seeks to improve the classification accura... 详细信息
来源: 评论
A Fast Multi-network K-Dependence bayesian classifier for Continuous Features
收藏 引用
PATTERN RECOGNITION 2024年 150卷
作者: Khodayari-Samghabadi, Imaneh Mohammad-Khanli, Leyli Tanha, Jafar Univ Tabriz Dept Elect & Comp Engn POB 19395-4697 Tabriz Iran
One of the bayesian network classifiers widely used in the classification is K -dependence bayesian (KDB). However, most of the KDB classifiers build a single network on a class variable without considering dependenci... 详细信息
来源: 评论
bayesian network classifiers using ensembles and smoothing
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2020年 第9期62卷 3457-3480页
作者: Zhang, He Petitjean, Francois Buntine, Wray Monash Univ Fac Informat Technol Melbourne Vic Australia
bayesian network classifiers are, functionally, an interesting class of models, because they can be learnt out-of-core, i.e. without needing to hold the whole training data in main memory. The selective K-dependence B... 详细信息
来源: 评论