咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 37 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 30 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 4 篇 软件工程
    • 3 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 安全科学与工程
  • 9 篇 理学
    • 5 篇 生物学
    • 3 篇 物理学
    • 2 篇 数学
    • 1 篇 统计学(可授理学、...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 37 篇 bayesian network...
  • 3 篇 ant colony optim...
  • 2 篇 fitness landscap...
  • 2 篇 search-and-score...
  • 2 篇 genetic algorith...
  • 2 篇 most weight supp...
  • 2 篇 ensemble method
  • 2 篇 bayesian score
  • 2 篇 improved algorit...
  • 2 篇 cement rotary ki...
  • 2 篇 fault diagnosis ...
  • 1 篇 attribution
  • 1 篇 continuous and d...
  • 1 篇 causal discovery
  • 1 篇 quantum optimiza...
  • 1 篇 representation l...
  • 1 篇 noise reduction
  • 1 篇 topological sort
  • 1 篇 penalty factors
  • 1 篇 empirical evalua...

机构

  • 4 篇 robert gordon un...
  • 4 篇 heriot watt univ...
  • 3 篇 hohai univ coll ...
  • 1 篇 univ bremen fac ...
  • 1 篇 univ sci & techn...
  • 1 篇 northeastern uni...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ toronto on
  • 1 篇 information scie...
  • 1 篇 indian inst tech...
  • 1 篇 univ philippines...
  • 1 篇 univ lyon f-6900...
  • 1 篇 univ alberta sch...
  • 1 篇 yanshan univ inf...
  • 1 篇 biomed res ctr n...
  • 1 篇 osaka univ dept ...
  • 1 篇 univ sydney nsw ...
  • 1 篇 sharif univ tech...
  • 1 篇 univ bristol dep...
  • 1 篇 univ auckland de...

作者

  • 4 篇 wu yanghui
  • 4 篇 mccall john
  • 4 篇 corne david
  • 3 篇 tang yan
  • 1 篇 hong yu
  • 1 篇 print cristin
  • 1 篇 li sheng
  • 1 篇 ramsey joseph
  • 1 篇 hong-xun zhang
  • 1 篇 xu zhuoming
  • 1 篇 maiyar lohithaks...
  • 1 篇 ge gaolong
  • 1 篇 torrijos pablo
  • 1 篇 dehkordi mohamma...
  • 1 篇 ohno hiroshi
  • 1 篇 tiwari manoj kum...
  • 1 篇 sattari fereshte...
  • 1 篇 suzuki joe
  • 1 篇 chunfeng wang
  • 1 篇 liu yang

语言

  • 35 篇 英文
  • 2 篇 其他
检索条件"主题词=Bayesian Network Structure Learning"
37 条 记 录,以下是1-10 订阅
排序:
Creating an incident investigation framework for a complex socio-technical system: Application of multi-label text classification and bayesian network structure learning
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2025年 260卷
作者: Dehkordi, Mohammadreza Karimi Sattari, Fereshteh Lefsrud, Lianne Univ Alberta Sch Engn Safety & Risk Management Dept Chem & Mat Engn Edmonton AB T6G 1H9 Canada
The power distribution sector presents a complex socio-technical system where accidents frequently occur from various technical, human, environmental, and organizational factors, resulting in fatalities and substantia... 详细信息
来源: 评论
A Hybrid Method:Resolving the Impact of Variable Ordering in bayesian network structure learning
收藏 引用
Fudan Journal of the Humanities and Social Sciences 2025年 第1期18卷 175-191页
作者: Minglan Li Yueqin Hu Faculty of Psychology Beijing Normal University19 Xinjiekouwai St.Beijing100875China
In recent years,the development of machine learning has introduced new analytical methods to theoretical research,one of which is bayesian network—a probabilistic graphical model well-suited for modelling complex non... 详细信息
来源: 评论
FedGES: A Federated learning Approach for bayesian network structure learning  27th
FedGES: A Federated Learning Approach for Bayesian Network S...
收藏 引用
27th International Conference on Discovery Science
作者: Torrijos, Pablo Gamez, Jose A. Puerta, Jose M. Univ Castilla La Mancha Inst Invest Informat Albacete I3A Albacete 02071 Spain Univ Castilla La Mancha Dept Sistemas Informaticos Albacete 02071 Spain
bayesian network (BN) structure learning traditionally centralizes data, raising privacy concerns when data is distributed across multiple entities. This research introduces Federated GES (FedGES), a novel Federated L... 详细信息
来源: 评论
bayesian network structure learning using quantum generative models
收藏 引用
QUANTUM MACHINE INTELLIGENCE 2024年 第2期6卷 1-14页
作者: Ohno, Hiroshi Toyota Cent Res & Dev Labs Inc 41-1 Yokomichi Nagakute Aichi Japan
bayesian network structure learning (BNSL) is a popular NP-hard optimization problem in the classical machine learning community. Given data, the network structure is optimized under the constraints of a directed acyc... 详细信息
来源: 评论
bayesian network structure learning from Big Data: A Reservoir Sampling Based Ensemble Method  1
收藏 引用
International Workshop on Database Systems for Advanced Applications (DASFAA)
作者: Tang, Yan Xu, Zhuoming Zhuang, Yuanhang Hohai Univ Coll Comp & Informat Nanjing 210098 Jiangsu Peoples R China
bayesian network (BN) learning from big datasets is potentially more valuable than learning from conventional small datasets as big data contain more comprehensive probability distributions and richer causal relations... 详细信息
来源: 评论
Quantum approximate optimization algorithm for bayesian network structure learning
收藏 引用
QUANTUM INFORMATION PROCESSING 2022年 第1期22卷 1-28页
作者: Soloviev, Vicente P. Bielza, Concha Larranaga, Pedro Univ Politecn Madrid Computat Intelligence Grp Campus Montegancedo Madrid Spain
bayesian network structure learning is an NP-hard problem that has been faced by a number of traditional approaches in recent decades. Currently, quantum technologies offer a wide range of advantages that can be explo... 详细信息
来源: 评论
A bayesian network structure learning Algorithm Based on Probabilistic Incremental Analysis and Constraint
收藏 引用
IEEE ACCESS 2022年 10卷 130719-130732页
作者: Liu, Haoran Cui, Shaopeng Li, Sheng Wang, Niantai Shi, Qianrui Cai, Yanbin Zhang, Liyue Liu, Dayan Yanshan Univ Informat Sci & Engn Dept Qinhuangdao 066004 Peoples R China Yanshan Univ Sch Elect Engn Qinhuangdao 066004 Hebei Peoples R China
To address the problem of low efficiency of the existing hill-climbing algorithm in bayesian network structure learning, this paper proposes a bayesian network structure learning algorithm based on probabilistic incre... 详细信息
来源: 评论
An efficient bayesian network structure learning algorithm using the strategy of two-stage searches
收藏 引用
INTELLIGENT DATA ANALYSIS 2020年 第5期24卷 1087-1106页
作者: Guo, Huiping Li, Hongru Northeastern Univ Informat Sci & Engn POB 13511 St 3Wenhua Rd Shenyang 110819 Liaoning Peoples R China
It is important for bayesian network (BN) structure learning, a NP-problem, to improve the accuracy and hybrid algorithms are a kind of effective structure learning algorithms at present. Most hybrid algorithms adopt ... 详细信息
来源: 评论
An Efficient bayesian network structure learning Strategy
收藏 引用
NEW GENERATION COMPUTING 2017年 第1期35卷 105-124页
作者: Suzuki, Joe Osaka Univ Dept Math 1-1 Machikaneyamacho Toyonaka Osaka 5600043 Japan
This paper addresses the problem of efficiently finding an optimal bayesian network structure for maximizing the posterior probability. In particular, we focus on the B& B strategy to save the computational effort... 详细信息
来源: 评论
Comparative Analysis of Search and Score Metaheuristics for bayesian network structure learning Using Node Juxtaposition Distributions
Comparative Analysis of Search and Score Metaheuristics for ...
收藏 引用
11th International Conference on Parallel Problem Solving from Nature
作者: Wu, Yanghui McCall, John Corne, David Robert Gordon Univ IDEAS Res Inst Aberdeen AB9 1FR Scotland Heriot Watt Univ Sch Math & Comp Sci Edinburgh Midlothian Scotland
learning bayesian networks from data is an NP-hard problem with important practical applications. Metaheuristic search on the space of node orderings combined with deterministic construction and scoring of a network i... 详细信息
来源: 评论