咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 37 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 30 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 4 篇 软件工程
    • 3 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 安全科学与工程
  • 9 篇 理学
    • 5 篇 生物学
    • 3 篇 物理学
    • 2 篇 数学
    • 1 篇 统计学(可授理学、...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 37 篇 bayesian network...
  • 3 篇 ant colony optim...
  • 2 篇 fitness landscap...
  • 2 篇 search-and-score...
  • 2 篇 genetic algorith...
  • 2 篇 most weight supp...
  • 2 篇 ensemble method
  • 2 篇 bayesian score
  • 2 篇 improved algorit...
  • 2 篇 cement rotary ki...
  • 2 篇 fault diagnosis ...
  • 1 篇 attribution
  • 1 篇 continuous and d...
  • 1 篇 causal discovery
  • 1 篇 quantum optimiza...
  • 1 篇 representation l...
  • 1 篇 noise reduction
  • 1 篇 topological sort
  • 1 篇 penalty factors
  • 1 篇 empirical evalua...

机构

  • 4 篇 robert gordon un...
  • 4 篇 heriot watt univ...
  • 3 篇 hohai univ coll ...
  • 1 篇 univ bremen fac ...
  • 1 篇 univ sci & techn...
  • 1 篇 northeastern uni...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ toronto on
  • 1 篇 information scie...
  • 1 篇 indian inst tech...
  • 1 篇 univ philippines...
  • 1 篇 univ lyon f-6900...
  • 1 篇 univ alberta sch...
  • 1 篇 yanshan univ inf...
  • 1 篇 biomed res ctr n...
  • 1 篇 osaka univ dept ...
  • 1 篇 univ sydney nsw ...
  • 1 篇 sharif univ tech...
  • 1 篇 univ bristol dep...
  • 1 篇 univ auckland de...

作者

  • 4 篇 wu yanghui
  • 4 篇 mccall john
  • 4 篇 corne david
  • 3 篇 tang yan
  • 1 篇 hong yu
  • 1 篇 print cristin
  • 1 篇 li sheng
  • 1 篇 ramsey joseph
  • 1 篇 hong-xun zhang
  • 1 篇 xu zhuoming
  • 1 篇 maiyar lohithaks...
  • 1 篇 ge gaolong
  • 1 篇 torrijos pablo
  • 1 篇 dehkordi mohamma...
  • 1 篇 ohno hiroshi
  • 1 篇 tiwari manoj kum...
  • 1 篇 sattari fereshte...
  • 1 篇 suzuki joe
  • 1 篇 chunfeng wang
  • 1 篇 liu yang

语言

  • 35 篇 英文
  • 2 篇 其他
检索条件"主题词=Bayesian Network Structure Learning"
37 条 记 录,以下是11-20 订阅
排序:
Fitness Landscape Analysis of bayesian network structure learning
Fitness Landscape Analysis of Bayesian Network Structure Lea...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Wu, Yanghui McCall, John Corne, David Robert Gordon Univ IDEAS Res Inst Aberdeen AB9 1FR Scotland Heriot Watt Univ Sch Math & Comp Sci Edinburgh Midlothian Scotland
Algorithms for learning the structure of bayesian networks (BN) from data are the focus of intense research interest. Search-and-score algorithms using nature-inspired metaheuristics are an important strand of this re... 详细信息
来源: 评论
Adaptive bayesian network structure learning from Big Datasets  4th
Adaptive Bayesian Network Structure Learning from Big Datase...
收藏 引用
22nd International Conference on Database Systems for Advanced Applications (DASFAA)
作者: Tang, Yan Zhang, Qidong Liu, Huaxin Wang, Wangsong Hohai Univ Coll Comp & Informat Nanjing 210098 Jiangsu Peoples R China
Since big data contain more comprehensive probability distributions and richer causal relationships than conventional small datasets, discovering bayesian network (BN) structure from big datasets is becoming more and ... 详细信息
来源: 评论
Landscape Analysis for Hyperheuristic bayesian network structure learning on Unseen Problems
Landscape Analysis for Hyperheuristic Bayesian Network Struc...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Wu, Yanghui McCall, John Corne, David Regnier-Coudert, Olivier Robert Gordon Univ IDEAS Res Inst Aberdeen AB9 1FR Scotland Heriot Watt Univ Sch Math & Comp Sci Edinburgh Midlothian Scotland
bayesian network (BN) structure learning is an NP hard problem. Search and score algorithms are one of the main approaches proposed for learning BN structure from data. Previous research has shown that the relative pe... 详细信息
来源: 评论
The Role of Crossover Operator in bayesian network structure learning Performance: a Comprehensive Comparative Study and New Insights  17
The Role of Crossover Operator in Bayesian Network Structure...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Contaldi, Carlo Vafaee, Fatemeh Nelson, Peter C. Univ Illinois 1200 West Harrison St Chicago IL 60607 USA Univ Sydney Sydney NSW 2006 Australia
bayesian network (BN) structure learning is a complex search problem, generally characterized by multimodality and epistasis. Genetic Algorithms (GAs) have been extensively used to pursue the BN structure learning tas... 详细信息
来源: 评论
Two Novel Ant Colony Optimization Approaches for bayesian network structure learning
Two Novel Ant Colony Optimization Approaches for Bayesian Ne...
收藏 引用
2010 IEEE World Congress on Computational Intelligence
作者: Wu, Yanghui McCall, John Corne, David Robert Gordon Univ IDEAS Res Inst Aberdeen AB9 1FR Scotland Heriot Watt Univ Sch Math & Comp Sci Edinburgh Midlothian Scotland
learning bayesian networks from data is an NP-hard problem with important practical applications. Several researchers have designed algorithms to overcome the computational complexity of this task. Difficult challenge... 详细信息
来源: 评论
Transfer learning-based Hybrid Approach for bayesian network structure learning
收藏 引用
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 2022年 第7期31卷 2260003-2260003页
作者: Jose, Sonu Louis, Sushil Dascalu, Sergiu Liu, Siming Univ Nevada Dept Comp Sci & Engn 1664 N Virginia St Reno NV 89557 USA Missouri State Univ Dept Comp Sci & Engn 901 S Natl Ave Springfield MO 65897 USA
bayesian network is a graphical model that is widely used to perform probabilistic reasoning. However, learning the structure of bayesian network is a complex task. In this paper, we propose a hybrid structure learnin... 详细信息
来源: 评论
GOBNILP: learning bayesian network structure with integer programming  10
GOBNILP: Learning Bayesian network structure with integer pr...
收藏 引用
10th International Conference on Probabilistic Graphical Models (PGM)
作者: Cussens, James Univ Bristol Dept Comp Sci Bristol Avon England
The GOBNILP system for learning bayesian networks is presented. Both the Python and C implementations are discussed. The usefulness of learning multiple BNs is highlighted. Current work on 'pricing in' new int... 详细信息
来源: 评论
learning bayesian network structure from Large-scale Datasets  4
Learning Bayesian Network Structure from Large-scale Dataset...
收藏 引用
4th International Conference on Advanced Cloud and Big Data (CBD)
作者: Hong, Yu Xia, Xiaoling Le, Jiajin Zhou, Xiangdong Donghua Univ Sch Comp Sci & Technol Shanghai Peoples R China Fudan Univ Sch Comp Sci Shanghai Peoples R China
bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning bayesian network structure from large-scale datasets, a novel algorithm with the combi... 详细信息
来源: 评论
Large-Scale Hierarchical Causal Discovery via Weak Prior Knowledge
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2025年 第5期37卷 2695-2711页
作者: Wang, Xiangyu Ban, Taiyu Chen, Lyuzhou Lyu, Derui Zhu, Qinrui Chen, Huanhuan Univ Sci & Technol China Sch Comp Sci & Technol Hefei 230052 Peoples R China
Causal discovery faces significant challenges as the number of hypotheses grows exponentially with the number of variables. This complexity becomes particularly daunting when dealing with large sets of variables. We i... 详细信息
来源: 评论
Governance and sustainability of distributed continuum systems: a big data approach
收藏 引用
JOURNAL OF BIG DATA 2023年 第1期10卷 53页
作者: Donta, Praveen Kumar Sedlak, Boris Pujol, Victor Casamayor Dustdar, Schahram TU Wien Distributed Syst Grp A-1040 Vienna Austria
Distributed computing continuum systems (DCCS) make use of a vast number of computing devices to process data generated by edge devices such as the Internet of Things and sensor nodes. Besides performing computations,... 详细信息
来源: 评论