咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 37 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 30 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 4 篇 软件工程
    • 3 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 安全科学与工程
  • 9 篇 理学
    • 5 篇 生物学
    • 3 篇 物理学
    • 2 篇 数学
    • 1 篇 统计学(可授理学、...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 37 篇 bayesian network...
  • 3 篇 ant colony optim...
  • 2 篇 fitness landscap...
  • 2 篇 search-and-score...
  • 2 篇 genetic algorith...
  • 2 篇 most weight supp...
  • 2 篇 ensemble method
  • 2 篇 bayesian score
  • 2 篇 improved algorit...
  • 2 篇 cement rotary ki...
  • 2 篇 fault diagnosis ...
  • 1 篇 attribution
  • 1 篇 continuous and d...
  • 1 篇 causal discovery
  • 1 篇 quantum optimiza...
  • 1 篇 representation l...
  • 1 篇 noise reduction
  • 1 篇 topological sort
  • 1 篇 penalty factors
  • 1 篇 empirical evalua...

机构

  • 4 篇 robert gordon un...
  • 4 篇 heriot watt univ...
  • 3 篇 hohai univ coll ...
  • 1 篇 univ bremen fac ...
  • 1 篇 univ sci & techn...
  • 1 篇 northeastern uni...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ toronto on
  • 1 篇 information scie...
  • 1 篇 indian inst tech...
  • 1 篇 univ philippines...
  • 1 篇 univ lyon f-6900...
  • 1 篇 univ alberta sch...
  • 1 篇 yanshan univ inf...
  • 1 篇 biomed res ctr n...
  • 1 篇 osaka univ dept ...
  • 1 篇 univ sydney nsw ...
  • 1 篇 sharif univ tech...
  • 1 篇 univ bristol dep...
  • 1 篇 univ auckland de...

作者

  • 4 篇 wu yanghui
  • 4 篇 mccall john
  • 4 篇 corne david
  • 3 篇 tang yan
  • 1 篇 hong yu
  • 1 篇 print cristin
  • 1 篇 li sheng
  • 1 篇 ramsey joseph
  • 1 篇 hong-xun zhang
  • 1 篇 xu zhuoming
  • 1 篇 maiyar lohithaks...
  • 1 篇 ge gaolong
  • 1 篇 torrijos pablo
  • 1 篇 dehkordi mohamma...
  • 1 篇 ohno hiroshi
  • 1 篇 tiwari manoj kum...
  • 1 篇 sattari fereshte...
  • 1 篇 suzuki joe
  • 1 篇 chunfeng wang
  • 1 篇 liu yang

语言

  • 35 篇 英文
  • 1 篇 其他
检索条件"主题词=Bayesian Network Structure Learning"
37 条 记 录,以下是21-30 订阅
排序:
A comparative study on swarm intelligence for structure learning of bayesian networks
收藏 引用
SOFT COMPUTING 2017年 第22期21卷 6713-6738页
作者: Ji, Junzhong Yang, Cuicui Liu, Jiming Liu, Jinduo Yin, Baocai Beijing Univ Technol Coll Comp Sci & Technol Beijing Municipal Key Lab Multimedia & Intelligen Beijing Peoples R China Hong Kong Baptist Univ Dept Comp Sci & Technol Kowloon Hong Kong Peoples R China
A bayesian network (BN) is an important probabilistic model in the field of artificial intelligence and a powerful formalism used to describe uncertainty in the real world. As science and technology develop, considera... 详细信息
来源: 评论
Optimising online review inspired product attribute classification using the self-learning particle swarm-based bayesian learning approach
收藏 引用
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 2019年 第10期57卷 3099-3120页
作者: Maiyar, Lohithaksha M. Cho, SangJe Tiwari, Manoj Kumar Thoben, Klaus-Dieter Kiritsis, Dimitris Indian Inst Technol Kharagpur Dept Ind & Syst Engn Kharagpur W Bengal India Ecole Polytech Fed De Lausanne SCI STK DK Mech Engn De Lausanne Switzerland Univ Bremen Fac Prod Engn Bremen Germany
Bowing to the burgeoning needs of online consumers, exploitation of social media content for extrapolating buyer-centric information is gaining increasing attention of researchers and practitioners from service scienc... 详细信息
来源: 评论
Estimating Genome-Wide Gene networks Using Nonparametric bayesian network Models on Massively Parallel Computers
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011年 第3期8卷 683-697页
作者: Tamada, Yoshinori Imoto, Seiya Araki, Hiromitsu Nagasaki, Masao Print, Cristin Charnock-Jones, D. Stephen Miyano, Satoru Univ Tokyo Ctr Human Genome Inst Med Sci Lab DNA Informat AnalMinato Ku Tokyo 1088639 Japan RIKEN Computat Sci Res Program Wako Saitama 3510198 Japan Univ Auckland Dept Mol Med & Pathol Sch Med Sci Fac Med & Hlth Sci Auckland 1 New Zealand Univ Cambridge Rosie Hosp Dept Obstet & Gynaecol Cambridge CB2 0SW England Biomed Res Ctr Natl Inst Hlth Res Cambridge England
We present a novel algorithm to estimate genome-wide gene networks consisting of more than 20,000 genes from gene expression data using nonparametric bayesian networks. Due to the difficulty of learning bayesian netwo... 详细信息
来源: 评论
AN APPROACH OF WEB SERVICE ORGANIZATION USING bayesian network learning
收藏 引用
JOURNAL OF WEB ENGINEERING 2017年 第3-4期16卷 252-276页
作者: Liu, Jianxiao Xia, Zhihua Huazhong Agr Univ Coll Informat Wuhan Peoples R China Nanjing Univ Informat Sci & Technol Sch Comp & Software Nanjing Jiangsu Peoples R China Nanjing Univ Informat Sci & Technol Jiangsu Engn Ctr Network Monitoring Nanjing Jiangsu Peoples R China
How to organize and manage Web services, and help users to select the atomic and a set of services with correlations to meet their functional and non-functional requirements quickly is a key problem to be solved in th... 详细信息
来源: 评论
Scoring bayesian networks of mixed variables
收藏 引用
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2018年 第1期6卷 3-18页
作者: Andrews, Bryan Ramsey, Joseph Cooper, Gregory F. Univ Pittsburgh Pittsburgh PA 15260 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA
In this paper we outline two novel scoring methods for learning bayesian networks in the presence of both continuous and discrete variables, that is, mixed variables. While much work has been done in the domain of aut... 详细信息
来源: 评论
bayesian network learning algorithm based on unconstrained optimization and ant colony optimization
收藏 引用
Journal of Systems Engineering and Electronics 2012年 第5期23卷 784-790页
作者: Chunfeng Wang Sanyang Liu Mingmin Zhu Department of Mathematical Sciences Xidian University Xi'an 710071 E R. China Department of Mathematics Henan Normal University Xinxiang 453007 E R. China
structure learning of bayesian networks is a wellresearched but computationally hard *** learning bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimiza... 详细信息
来源: 评论
An Efficient and Scalable Algorithm for Local bayesian network structure Discovery
An Efficient and Scalable Algorithm for Local Bayesian Netwo...
收藏 引用
European Conference on Machine learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: de Morais, Sergio Rodrigues Aussem, Alex Univ Lyon F-69000 Lyon France Univ Lyon 1 LIESP Lab F-69622 Villeurbanne France
We present an efficient and scalable constraint-based algorithm, called Hybrid Parents and Children (HPC), to learn the parents and children of a target variable in a bayesian network. Finding those variables is an im... 详细信息
来源: 评论
Generalized bayesian structure learning from Noisy Datasets  24th
Generalized Bayesian Structure Learning from Noisy Datasets
收藏 引用
24th Int Conference on Database Systems for Advanced Applications / 6th Int Workshop on Big Data Management and Service / 4th Int Workshop on Big Data Quality Management / 3rd Int Workshop on Graph Data Management and Analysis
作者: Tang, Yan Chen, Yu Ge, Gaolong Hohai Univ Coll Comp & Informat Nanjing 210098 Jiangsu Peoples R China
In recent years, with the open data movement around the world, more and more open data sets are available. But, the quality of the datasets poses issues for learning models. This study focuses on learning the bayesian... 详细信息
来源: 评论
Investigation of fault diagnosis model of rotary kiln based on improved algorithm of bayesian  5
Investigation of fault diagnosis model of rotary kiln based ...
收藏 引用
Fifth International Conference on Instrumentation & Measurement, Computer, Communication, and Control (IMCCC)
作者: Liu, Hao-Ran Lv, Xiao-He Li, Xuan Li, Shi-Zhao Shi, Yong-Hong YanShan Univ Informat Sci & Engn Coll Hebei Prov Key Lab Special Opt Fiber & Opt Fiber Qinhuangdao 066004 Peoples R China YanShan Univ Informat Sci & Engn Coll Qinhuangdao 066004 Peoples R China
bayesian network is one of the most efficient and reliable method in data mining, and bayesian network structure learning is a key link in the process of bayesian network research. Aiming at the problem of the classic... 详细信息
来源: 评论
Time-Approximation Trade-Offs for learning bayesian networks  12
Time-Approximation Trade-Offs for Learning Bayesian Networks
收藏 引用
12th International Conference on Probabilistic Graphical Models (PGM)
作者: Kundu, Madhumita Parviainen, Pekka Saurabh, Saket Univ Bergen Bergen Norway Univ Bergen Inst Math Sci Bergen Norway
bayesian network structure learning is an NP-hard problem. Furthermore, the problem remains hard even for various subclasses of graphs. Motivated by the hardness of exact learning, we study approximation algorithms fo... 详细信息
来源: 评论