咨询与建议

限定检索结果

文献类型

  • 101 篇 期刊文献
  • 30 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 67 篇 计算机科学与技术...
    • 20 篇 电气工程
    • 13 篇 控制科学与工程
    • 13 篇 石油与天然气工程
    • 13 篇 软件工程
    • 11 篇 动力工程及工程热...
    • 7 篇 信息与通信工程
    • 7 篇 化学工程与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 4 篇 水利工程
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 建筑学
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 网络空间安全
  • 29 篇 理学
    • 8 篇 物理学
    • 7 篇 化学
    • 6 篇 数学
    • 5 篇 生物学
    • 4 篇 地球物理学
    • 2 篇 大气科学
    • 1 篇 地理学
  • 13 篇 管理学
    • 12 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 2 篇 医学

主题

  • 132 篇 bayesian optimiz...
  • 13 篇 estimation of di...
  • 9 篇 machine learning
  • 7 篇 bayesian network
  • 6 篇 deep learning
  • 5 篇 evolutionary alg...
  • 5 篇 genetic algorith...
  • 5 篇 bayesian network...
  • 5 篇 convolutional ne...
  • 5 篇 evolutionary com...
  • 4 篇 optimization
  • 4 篇 dynamic environm...
  • 4 篇 long short-term ...
  • 4 篇 feature selectio...
  • 4 篇 efficiency enhan...
  • 3 篇 multi-objective ...
  • 3 篇 state of health
  • 3 篇 lithium-ion batt...
  • 3 篇 random forest
  • 3 篇 hierarchical boa

机构

  • 4 篇 univ illinois il...
  • 3 篇 sungkyunkwan uni...
  • 2 篇 kn toosi univ te...
  • 2 篇 azarbaijan shahi...
  • 2 篇 univ bahrain col...
  • 2 篇 guangzhou coll c...
  • 2 篇 jiangsu univ nat...
  • 2 篇 huazhong univ sc...
  • 2 篇 arak univ fac en...
  • 2 篇 sharif univ tech...
  • 2 篇 univ isfahan dep...
  • 2 篇 imam abdulrahman...
  • 2 篇 south china agr ...
  • 1 篇 liaoning engn re...
  • 1 篇 tokyo university...
  • 1 篇 univ wroclaw ins...
  • 1 篇 jiangsu univ ins...
  • 1 篇 xinjiang elect p...
  • 1 篇 china pingmei sh...
  • 1 篇 school of mechan...

作者

  • 6 篇 ahn chang wook
  • 6 篇 pelikan martin
  • 6 篇 kaedi marjan
  • 5 篇 ghasem-aghaee na...
  • 5 篇 goldberg david e...
  • 4 篇 nikanjam amin
  • 4 篇 hossain s. m. za...
  • 3 篇 rafe vahid
  • 3 篇 xu hua
  • 3 篇 jia peifa
  • 3 篇 pira einollah
  • 3 篇 yang jiadong
  • 3 篇 sultana nahid
  • 2 篇 tang shengnan
  • 2 篇 sastry kumara
  • 2 篇 beigy hamid
  • 2 篇 hai thi thanh ng...
  • 2 篇 yang lei
  • 2 篇 zhu yong
  • 2 篇 kong yuyan

语言

  • 120 篇 英文
  • 12 篇 其他
检索条件"主题词=Bayesian Optimization Algorithm"
132 条 记 录,以下是121-130 订阅
Sporadic model building for efficiency enhancement of the hierarchical BOA
收藏 引用
GENETIC PROGRAMMING AND EVOLVABLE MACHINES 2008年 第1期9卷 53-84页
作者: Pelikan, Martin Sastry, Kumara Goldberg, David E. Univ Missouri Dept Math & Comp Sci Missouri Estimat Distribut Algorithm Lab St Louis MO 63121 USA Univ Illinois Dept Ind & Enterprise Syst Engn Illinois Genet Algorithm Lab Urbana IL 61801 USA
Efficiency enhancement techniques - such as parallelization and hybridization - are among the most important ingredients of practical applications of genetic and evolutionary algorithms and that is why this research a... 详细信息
来源: 评论
A review of estimation of distribution algorithms in bioinformatics
收藏 引用
BIODATA MINING 2008年 第1期1卷 6-6页
作者: Armananzas, Ruben Inza, Inaki Santana, Roberto Saeys, Yvan Luis Flores, Jose Antonio Lozano, Jose Van de Peer, Yves Blanco, Rosa Robles, Victor Bielza, Concha Larranaga, Pedro Univ Basque Country Dept Comp Sci & Artificial Intelligence San Sebastian Spain Univ Ghent Dept Plant Syst Biol B-9000 Ghent Belgium Univ Ghent Dept Mol Genet B-9000 Ghent Belgium Univ Publ Navarra Dept Stat & Operat Res Pamplona Spain Univ Politecn Madrid Dept Arquitectura & Tecnol Sistemas Informat Madrid Spain Univ Politecn Madrid Dept Inteligencia Artificial Madrid Spain
Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the m... 详细信息
来源: 评论
ECGA vs. BOA in Discovering Stock Market Trading Experts  07
ECGA vs. BOA in Discovering Stock Market Trading Experts
收藏 引用
Annual Conference of Genetic and Evolutionary Computation Conference
作者: Lipinski, Piotr Univ Wroclaw Inst Comp Sci PL-50383 Wroclaw Poland
This paper presents two evolutionary algorithms, ECGA and BOA, applied to constructing stock market trading expertise, which is built on the basis of a set of specific trading rules analysing financial time series of ... 详细信息
来源: 评论
Analyzing Probabilistic Models in Hierarchical BOA on Traps and Spin Glasses  07
Analyzing Probabilistic Models in Hierarchical BOA on Traps ...
收藏 引用
Annual Conference of Genetic and Evolutionary Computation Conference
作者: Hauschild, Mark Pelikan, Martin Lima, Claudio F. Sastry, Kumara Univ Missouri MEDAL Dept Math & Comp Sci 320 CCBOne Univ Blvd St Louis MO 63121 USA Univ Algarve Informat Lab UALG ILAB Dept Elect & Comp Sci Engn P-8000117 Faro Portugal Univ Illinois Dept Ind & Enterprise Syst Engn Illinois Genet Algorithms Lab ILLiGAL Urbana IL 61801 USA
The hierarchical bayesian optimization algorithm (hBOA) can solve nearly decomposable and hierarchical problems of bounded difficulty in a robust and scalable manner by building and sampling probabilistic models of pr... 详细信息
来源: 评论
Automated global structure extraction for effective local building block processing in XCS
收藏 引用
EVOLUTIONARY COMPUTATION 2006年 第3期14卷 345-380页
作者: Butz, Martin V. Pelikan, Martin Llora, Xavier Goldberg, David E. Univ Wurzburg Dept Cognit Psychol D-97070 Wurzburg Germany Univ Missouri Dept Math & Comp Sci St Louis MO 63043 USA Univ Illinois Illinois Genet Algorithms Lab Urbana IL 61801 USA
Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to ... 详细信息
来源: 评论
Does overfitting affect performance in estimation of distribution algorithms  06
Does overfitting affect performance in estimation of distrib...
收藏 引用
8th Annual Genetic and Evolutionary Computation Conference
作者: Wu, Hao Shapiro, Jonathan L. Univ Manchester Sch Comp Sci Manchester M13 9PL Lancs England
Estimation of Distribution algorithms (EDAs) are a class of evolutionary algorithms that use machine learning techniques to solve optimization problems. Machine learning is used to learn probabilistic models of the se... 详细信息
来源: 评论
Sporadic model building for efficiency enhancement of hierarchical BOA  06
Sporadic model building for efficiency enhancement of hierar...
收藏 引用
8th Annual Genetic and Evolutionary Computation Conference
作者: Pelikan, Martin Sastry, Kurnara Goldberg, David E. Univ Missouri Dept Math & Comp Sci Missouri Estimat Distribut Algorithms Lab 320 CCBOne Univ Blvd St Louis MO 63121 USA Univ Illinois Illinois Genet Algorithms Lab Urbana IL 61801 USA
This paper describes and analyzes sporadic model building, which can be used to enhance the efficiency of the hierarchical bayesian optimization algorithm (hBOA) and other advanced estimation of distribution algorithm... 详细信息
来源: 评论
Scalability of the bayesian optimization algorithm
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2002年 第3期31卷 221-258页
作者: Pelikan, M Sastry, K Goldberg, DE Univ Illinois Illinois Genet Algorithms Lab Urbana IL 61801 USA
To solve a wide range of different problems, the research in black-box optimization faces several important challenges. One of the most important challenges is the design of methods capable of automatic discovery and ... 详细信息
来源: 评论
Application of Tabu-BOA to acquire multimodal and multiobjective solutions for electric equipment configuration problems in a power plant
收藏 引用
ELECTRICAL ENGINEERING IN JAPAN 2005年 第3期152卷 8-20页
作者: Katsumata, Y Terano, T Tokyo Inst Technol Tokyo 152 Japan
This paper applies the bayesian optimization algorithm with Tabu Search (Tabu-BOA) to electric equipment configuration problems in a power plant. Tabu-BOA is a hybrid evolutionary computation algorithm with competent ... 详细信息
来源: 评论
Getting the best of both worlds: Discrete and continuous genetic and evolutionary algorithms in concert
收藏 引用
INFORMATION SCIENCES 2003年 第3-4期156卷 147-171页
作者: Pelikan, M Goldberg, DE Tsutsui, S Univ Illinois Illinois Genet Algorithms Lab Urbana IL 61801 USA
This paper describes an evolutionary algorithm for optimization of continuous problems that combines advanced recombination techniques for discrete representations with advanced mutation techniques for continuous repr... 详细信息
来源: 评论