咨询与建议

限定检索结果

文献类型

  • 100 篇 期刊文献
  • 26 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 115 篇 工学
    • 63 篇 计算机科学与技术...
    • 18 篇 电气工程
    • 12 篇 石油与天然气工程
    • 12 篇 软件工程
    • 11 篇 动力工程及工程热...
    • 11 篇 控制科学与工程
    • 7 篇 化学工程与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 信息与通信工程
    • 4 篇 水利工程
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 建筑学
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
  • 27 篇 理学
    • 7 篇 物理学
    • 7 篇 化学
    • 6 篇 数学
    • 5 篇 生物学
    • 3 篇 地球物理学
    • 2 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 12 篇 管理学
    • 12 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 2 篇 医学

主题

  • 127 篇 bayesian optimiz...
  • 13 篇 estimation of di...
  • 8 篇 machine learning
  • 7 篇 bayesian network
  • 6 篇 deep learning
  • 5 篇 evolutionary alg...
  • 5 篇 bayesian network...
  • 5 篇 convolutional ne...
  • 5 篇 evolutionary com...
  • 4 篇 optimization
  • 4 篇 dynamic environm...
  • 4 篇 long short-term ...
  • 4 篇 genetic algorith...
  • 4 篇 feature selectio...
  • 4 篇 efficiency enhan...
  • 3 篇 multi-objective ...
  • 3 篇 state of health
  • 3 篇 lithium-ion batt...
  • 3 篇 random forest
  • 3 篇 hierarchical boa

机构

  • 4 篇 univ illinois il...
  • 3 篇 sungkyunkwan uni...
  • 2 篇 kn toosi univ te...
  • 2 篇 azarbaijan shahi...
  • 2 篇 univ bahrain col...
  • 2 篇 guangzhou coll c...
  • 2 篇 jiangsu univ nat...
  • 2 篇 huazhong univ sc...
  • 2 篇 arak univ fac en...
  • 2 篇 sharif univ tech...
  • 2 篇 univ isfahan dep...
  • 2 篇 imam abdulrahman...
  • 2 篇 south china agr ...
  • 1 篇 liaoning engn re...
  • 1 篇 tokyo university...
  • 1 篇 univ wroclaw ins...
  • 1 篇 jiangsu univ ins...
  • 1 篇 xinjiang elect p...
  • 1 篇 china pingmei sh...
  • 1 篇 school of mechan...

作者

  • 6 篇 ahn chang wook
  • 6 篇 pelikan martin
  • 6 篇 kaedi marjan
  • 5 篇 ghasem-aghaee na...
  • 5 篇 goldberg david e...
  • 4 篇 nikanjam amin
  • 4 篇 hossain s. m. za...
  • 3 篇 rafe vahid
  • 3 篇 xu hua
  • 3 篇 jia peifa
  • 3 篇 pira einollah
  • 3 篇 yang jiadong
  • 3 篇 sultana nahid
  • 2 篇 tang shengnan
  • 2 篇 sastry kumara
  • 2 篇 beigy hamid
  • 2 篇 hai thi thanh ng...
  • 2 篇 yang lei
  • 2 篇 zhu yong
  • 2 篇 kong yuyan

语言

  • 117 篇 英文
  • 9 篇 其他
检索条件"主题词=Bayesian Optimization algorithm"
127 条 记 录,以下是1-10 订阅
排序:
An error-corrected deep Autoformer model via bayesian optimization algorithm and secondary decomposition for photovoltaic power prediction
收藏 引用
APPLIED ENERGY 2025年 377卷
作者: Chen, Jie Peng, Tian Qian, Shijie Ge, Yida Wang, Zheng Nazir, Muhammad Shahzad Zhang, Chu Huaiyin Inst Technol Fac Automat Huaian 223003 Peoples R China Huaiyin Inst Technol Jiangsu Permanent Magnet Motor Engn Res Ctr Huaian 223003 Peoples R China
Accurate PV power prediction is crucial for stable grid operation and rational dispatch. However, due to the instability of PV power generation, PV power prediction still has great challenges. Therefore, an Autoformer... 详细信息
来源: 评论
An online adaptive ROP prediction model using GBDT and bayesian optimization algorithm in drilling
GEOENERGY SCIENCE AND ENGINEERING
收藏 引用
GEOENERGY SCIENCE AND ENGINEERING 2025年 246卷
作者: Hao, Jiasheng Xu, Haomin Peng, Zhinan Cao, Zhen Univ Elect Sci & Technol China Sch Automat Engn Chengdu 611731 Sichuan Peoples R China
As global energy demand continues to grow, improving drilling efficiency and reducing costs become pivotal factors in the advancement of oil and gas industry. As a core component of drilling optimization, measuring th... 详细信息
来源: 评论
Enhanced K-NN with bayesian optimization algorithm for predicting energy efficiency of smart grids in IoT
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2024年 第9期27卷 12311-12322页
作者: Zhao, Wenlong Hu, Yuanchao Yan, Xiaopeng Liu, Xiaowei Ding, Rixian Dai, Chaofeng Cao, Ying Beijing Inst Technol Beijing Peoples R China Shandong Univ Technol Zibo Peoples R China Air Force Engn Univ Air Def & Missile Def Coll Xian Peoples R China Inspur Grp Co Ltd Jinan Peoples R China Henan Shenghuang Power Equipment Co Ltd Nanyang Peoples R China
With the increasing a huge amount of end users using electricity in modern cities, smart grids have some critical problems for energy efficiency and managing renewable energy resources. Therefore, electricity load for... 详细信息
来源: 评论
Lithium-ion battery equivalent thermal conductivity testing method based on bayesian optimization algorithm
收藏 引用
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2024年 第24期149卷 15073-15083页
作者: Wang, Fang Liu, Ruihao Ma, Xiaole Zhang, Yuxuan Bai, Guangli Ma, Biao Li, Danhua Wei, Zhen Liu, Shiqiang Zhu, Yueying China Automot Technol & Res Ctr Co Ltd Tianjin 300162 Peoples R China Tianjin Univ Sci & Technol Sch Mech Engn Tianjin 300457 Peoples R China
The thermal conductivity is one of the key thermal property's parameters in the design, modeling, and simulation of lithium-ion battery thermal management systems. Accurate measurement of thermal conductivity allo... 详细信息
来源: 评论
On Hyperparameter optimization of Machine Learning Methods Using a bayesian optimization algorithm to Predict Work Travel Mode Choice
收藏 引用
IEEE ACCESS 2023年 11卷 19762-19774页
作者: Aghaabbasi, Mahdi Ali, Mujahid Jasinski, Michal Leonowicz, Zbigniew Novak, Tomas Chulalongkorn Univ Transportat Inst Bangkok 10330 Thailand Silesian Tech Univ Fac Transport & Aviat Engn Dept Transport Syst Traff Engn & Logist PL-40019 Katowice Poland Wroclaw Univ Sci & Technol Fac Elect Engn Dept Elect Engn Fundamentals PL-50370 Wroclaw Poland VSB Tech Univ Ostrava Fac Elect Engn & Comp Sci Dept Elect Power Engn Ostrava 70800 Czech Republic
Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately forecasting how people will get to and from work. In the p... 详细信息
来源: 评论
Automatic SWMM Parameter Calibration Method Based on the Differential Evolution and bayesian optimization algorithm
收藏 引用
WATER 2023年 第20期15卷 3582-3582页
作者: Gao, Jiawei Liang, Ji Lu, Yu Zhou, Ruilong Lu, Xin Huazhong Univ Sci & Technol Sch Civil & Hydraul Engn Wuhan 430074 Peoples R China Sichuan Hydraul Res Inst Chengdu 610072 Peoples R China
In response to the low accuracy exhibited by the Storm Water Management Model (SWMM), we propose an enhanced Differential Evolution and bayesian optimization algorithm (DE-BOA). This algorithm integrates the global se... 详细信息
来源: 评论
A novel model for rainfall prediction using hybrid stochastic-based bayesian optimization algorithm
收藏 引用
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 2023年 第40期30卷 92555-92567页
作者: Lathika, P. Singh, D. Sheeba Noorul Islam Ctr Higher Educ Dept Math Thuckalay Tamil Nadu India
Rainfall forecasting is considered one of the key concerns in the meteorological department because it is related strongly to social as well as economic factors. But, because of modern context of climatic conditions a... 详细信息
来源: 评论
Performance optimization of Web Front-end Frameworks: Automatic Adjustment Strategies Based on bayesian optimization algorithm  24
Performance Optimization of Web Front-end Frameworks: Automa...
收藏 引用
International Conference on Machine Intelligence and Digital Applications (MIDA)
作者: Chen, Cuiqin Meng, Qing Huang, Junze Hainan Vocat Univ Haikou 570216 Hainan Peoples R China
In modern web development, performance optimization of front-end frameworks has become a key issue in improving user experience and system efficiency. The existing manual adjustment methods are often time-consuming an... 详细信息
来源: 评论
Using bayesian optimization algorithm for model-based integration testing
收藏 引用
SOFT COMPUTING 2022年 第7期26卷 3503-3525页
作者: Rafe, Vahid Mohammady, Somayeh Cuevas, Erik Arak Univ Fac Engn Dept Comp Engn Arak *** Iran Univ Guadalajara Dept Elect CUCEI Av Revoluc 1500 Guadalajara Jalisco Mexico
Model-based testing is an automated process in which executable tests are derived from behavioral models of a system. Model checking is a verification technique to reveal errors in which all reachable states of a syst... 详细信息
来源: 评论
bayesian optimization algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand
收藏 引用
ENERGIES 2022年 第9期15卷 3425-3425页
作者: Sultana, Nahid Hossain, S. M. Zakir Almuhaini, Salma Hamad Dustegor, Dilek Imam Abdulrahman Bin Faisal Univ Dept Comp Sci Coll Comp Sci & Informat Technol Dammam 31441 Saudi Arabia Univ Bahrain Dept Chem Engn Coll Engn Zallaq 32038 Bahrain Univ Groningen Fac Sci & Engn NL-9747 AG Groningen Netherlands
This article focuses on developing both statistical and machine learning approaches for forecasting hourly electricity demand in Ontario. The novelties of this study include (i) identifying essential factors that have... 详细信息
来源: 评论