咨询与建议

限定检索结果

文献类型

  • 14 篇 期刊文献
  • 2 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 17 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 6 篇 理学
    • 6 篇 数学
    • 1 篇 统计学(可授理学、...
  • 5 篇 工学
    • 4 篇 计算机科学与技术...
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 机械工程
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 1 篇 军事学

主题

  • 17 篇 bayesian dynamic...
  • 2 篇 policy learning
  • 2 篇 reinforcement le...
  • 2 篇 model learning
  • 2 篇 sorting
  • 2 篇 multiple criteri...
  • 2 篇 bayesian learnin...
  • 2 篇 dirichlet distri...
  • 2 篇 bayesian invento...
  • 2 篇 unobserved lost ...
  • 1 篇 optimal inventor...
  • 1 篇 structural healt...
  • 1 篇 bayesian robustn...
  • 1 篇 newsvendor distr...
  • 1 篇 risk aversion
  • 1 篇 multiple markets
  • 1 篇 stationary bayes...
  • 1 篇 exploration vs e...
  • 1 篇 sensitivity anal...
  • 1 篇 kantorovich metr...

机构

  • 1 篇 soochow univ sch...
  • 1 篇 stanford univ st...
  • 1 篇 natl univ singap...
  • 1 篇 univ turin dipar...
  • 1 篇 stanford univ gr...
  • 1 篇 stanford univ gr...
  • 1 篇 univ karlsruhe i...
  • 1 篇 nanyang technol ...
  • 1 篇 univ hamburg ham...
  • 1 篇 minist educ key ...
  • 1 篇 truedemand inc l...
  • 1 篇 univ british col...
  • 1 篇 georgetown univ ...
  • 1 篇 inst. wirtschaft...
  • 1 篇 school of comput...
  • 1 篇 univ padua dipar...
  • 1 篇 duke univ fuqua ...
  • 1 篇 univ british col...
  • 1 篇 key laboratory o...
  • 1 篇 univ texas austi...

作者

  • 2 篇 porteus el
  • 2 篇 kim michael jong
  • 1 篇 hui wang
  • 1 篇 wang hui
  • 1 篇 zhu zuo
  • 1 篇 rieder u
  • 1 篇 yang yanping
  • 1 篇 müller a
  • 1 篇 zhang xiaofang
  • 1 篇 angelus a
  • 1 篇 chuang ya-tang
  • 1 篇 ulu canan
  • 1 篇 chen li
  • 1 篇 zhang xinyuan
  • 1 篇 nicolato e
  • 1 篇 canan ulu
  • 1 篇 shively thomas s...
  • 1 篇 zhang zongzhang
  • 1 篇 zongzhang zhang
  • 1 篇 shuhua you

语言

  • 16 篇 英文
  • 1 篇 其他
检索条件"主题词=Bayesian dynamic programming"
17 条 记 录,以下是1-10 订阅
排序:
Tracking time-varying properties using quasi time-invariant models with bayesian dynamic programming
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2025年 223卷
作者: Yang, Yanping Zhu, Zuo Au, Siu-Kui Nanyang Technol Univ Sch Civil & Environm Engn Singapore Singapore Univ Exeter Coll Engn Math & Phys Sci Vibrat Engn Sect Exeter England
Tracking the temporal variation of the properties of a system is relevant in different settings when data of extended duration is available, e.g., anomaly detection, condition monitoring, and trend identification. One... 详细信息
来源: 评论
Sequential bayesian Replacement With Unknown Transition Probabilities
收藏 引用
NAVAL RESEARCH LOGISTICS 2025年 第0期
作者: Chuang, Ya-Tang Natl Cheng Kung Univ Dept Ind & Informat Management Tainan Taiwan
We investigate a class of sequential replacement optimization problems where transition probabilities of states are not known a priori but need to be learned over time via information acquisition. The goal of the deci... 详细信息
来源: 评论
A bayesian model for multicriteria sorting problems
收藏 引用
IISE TRANSACTIONS 2024年 第7期56卷 777-791页
作者: Ulu, Canan Shively, Thomas S. Georgetown Univ McDonough Sch Business Washington DC 20057 USA Univ Texas Austin McCombs Sch Business Austin TX USA
Decision makers are often interested in assigning alternatives to preference classes under multiple criteria instead of choosing the best alternative or ranking all the alternatives. Firms need to categorize suppliers... 详细信息
来源: 评论
Learning Manipulation Through Information Dissemination
收藏 引用
OPERATIONS RESEARCH 2022年 第6期70卷 3490-3510页
作者: Keppo, Jussi Kim, Michael Jong Zhang, Xinyuan Natl Univ Singapore NUS Business Sch Singapore 119245 Singapore Natl Univ Singapore Inst Operat Res & Analyt Singapore 119245 Singapore Univ British Columbia Sauder Sch Business Vancouver BC V6T IZ2 Canada
We study optimal manipulation of a bayesian learner through adaptive provisioning of information. The problem is motivated by settings in which a firm can disseminate possibly biased information at a cost, to influenc... 详细信息
来源: 评论
Variance Regularization in Sequential bayesian Optimization
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 2020年 第3期45卷 966-992页
作者: Kim, Michael Jong Univ British Columbia Sauder Sch Business Vancouver BC V6T 1Z2 Canada
Sequential bayesian optimization constitutes an important and broad class of problems where model parameters are not known a priori but need to be learned over time using bayesian updating. It is known that the soluti... 详细信息
来源: 评论
A bayesian model for multicriteria sorting problems
A I I E Transactions
收藏 引用
A I I E Transactions 2024年 第7期56卷
作者: Canan Ulu Thomas S. Shively a McDonough School of Business Georgetown University Washington DC USA b McCombs School of Business University of Texas at Austin Austin TX USA
Decision makers are often interested in assigning alternatives to preference classes under multiple criteria instead of choosing the best alternative or ranking all the alternatives. Firms need to categorize suppliers... 详细信息
来源: 评论
dynamic Inventory Optimization with Learning and Model Ambiguity
Dynamic Inventory Optimization with Learning and Model Ambig...
收藏 引用
作者: Ya-Tang Chuang University of Toronto
学位级别:博士
Classic inventory control problems typically assume that the demand distribution is known a priori. In reality, this assumption is not always satisfied. Motivated by this concern, the joint optimization of learn- ing ... 详细信息
来源: 评论
Intelligent Model Learning Based on Variance for bayesian Reinforcement Learning  27
Intelligent Model Learning Based on Variance for Bayesian Re...
收藏 引用
27th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
作者: You, Shuhua Liu, Quan Zhang, Zongzhang Wang, Hui Zhang, Xiaofang Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China Minist Educ Key Lab Symbol Computat & Knowledge Engn Seoul South Korea
We consider a modular method to reinforcement learning that represents uncertainty of model parameters by maintaining probability distributions over them. The algorithm we call MBDP (model-based bayesian dynamic progr... 详细信息
来源: 评论
Intelligent Model Learning Based on Variance for bayesian Reinforcement Learning
Intelligent Model Learning Based on Variance for Bayesian Re...
收藏 引用
International Conference on Tools with Artificial Intelligence
作者: Shuhua You Quan Liu Zongzhang Zhang Hui Wang Xiaofang Zhang School of Computer Science and Technology Soochow University Suzhou China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education
We consider a modular method to reinforcement learning that represents uncertainty of model parameters by maintaining probability distributions over them. The algorithm we call MBDP (model-based bayesian dynamic progr... 详细信息
来源: 评论
dynamic traffic splitting to parallel wireless networks with partial information: A bayesian approach
收藏 引用
PERFORMANCE EVALUATION 2012年 第1期69卷 41-52页
作者: Bhulai, S. Hoekstra, G. J. Bosman, J. W. van der Mei, R. D. Vrije Univ Amsterdam Dept Math Amsterdam Netherlands CWI Probabil & Stochast Networks NL-1009 AB Amsterdam Netherlands Thales Innovat Res & Technol Huizen Netherlands
Contemporary wireless networks are based on a wide range of different technologies providing overlapping coverage. This offers users a seamless integration of connectivity by allowing to switch between networks, and o... 详细信息
来源: 评论