咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 石油与天然气工程
    • 1 篇 软件工程
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 3 篇 bayesian hyperpa...
  • 2 篇 wind power forec...
  • 1 篇 hyperparameters ...
  • 1 篇 ant colony optim...
  • 1 篇 neural architect...
  • 1 篇 gradient boosted...
  • 1 篇 xgboost algorith...
  • 1 篇 machine learning
  • 1 篇 feature selectio...
  • 1 篇 convolutional ne...
  • 1 篇 numerical weathe...

机构

  • 1 篇 hangzhou dianzi ...
  • 1 篇 xian key lab int...
  • 1 篇 cardiff univ sch...
  • 1 篇 univ kairouan fa...
  • 1 篇 guohua hami new ...
  • 1 篇 nanjing univ ofi...
  • 1 篇 univ sfax natl s...
  • 1 篇 north china univ...
  • 1 篇 xian univ techno...

作者

  • 1 篇 guo xiaojie
  • 1 篇 dang jian
  • 1 篇 zeng pingliang
  • 1 篇 wang xiaolong
  • 1 篇 shi xiaoyu
  • 1 篇 ltifi hela
  • 1 篇 zou ruiling
  • 1 篇 jlassi sinda
  • 1 篇 liang jun
  • 1 篇 jdey imen
  • 1 篇 huang hui
  • 1 篇 xiong xiong
  • 1 篇 jia rong

语言

  • 3 篇 英文
检索条件"主题词=Bayesian hyperparameters optimization"
3 条 记 录,以下是1-10 订阅
排序:
Feature selection and hyper parameters optimization for short-term wind power forecast
收藏 引用
APPLIED INTELLIGENCE 2021年 第10期51卷 6752-6770页
作者: Huang, Hui Jia, Rong Shi, Xiaoyu Liang, Jun Dang, Jian Xian Univ Technol Inst Water Resources & Hydroelect Engn Xian 710048 Peoples R China North China Univ Water Resources & Elect Power Sch Elect Power Zhengzhou 450011 Henan Peoples R China Xian Key Lab Intelligent Energy Xian 710048 Peoples R China Cardiff Univ Sch Engn Cardiff CF24 3AA Wales
Accurate wind power forecasting plays an increasingly significant role in power grid normal operation with large-scale wind energy. The precise and stable forecasting of wind power with short computational time is sti... 详细信息
来源: 评论
bayesian Hyperparameter optimization of Deep Neural Network Algorithms Based on Ant Colony optimization  16th
Bayesian Hyperparameter Optimization of Deep Neural Network ...
收藏 引用
16th IAPR International Conference on Document Analysis and Recognition (ICDAR)
作者: Jlassi, Sinda Jdey, Imen Ltifi, Hela Univ Kairouan Fac Sci & Tech Sidi Bouzid Kairouan Tunisia Univ Sfax Natl Sch Engineers ENIS REs Grp Intelligent Machines BP 1173 Sfax 3038 Tunisia
Within this paper we proposed a new method named BayesACO, to improve the convolutional neural network based on neural architecture search with hyperparameters optimization. At its essence Bayes ACO in first side uses... 详细信息
来源: 评论
A Short-Term Wind Power Forecast Method via XGBoost Hyper-Parameters optimization
收藏 引用
FRONTIERS IN ENERGY RESEARCH 2022年 10卷
作者: Xiong, Xiong Guo, Xiaojie Zeng, Pingliang Zou, Ruiling Wang, Xiaolong Nanjing Univ ofInformat Sci & Technol Jiangsu Collaborat Innovat Ctr Atmospher Environm Nanjing Peoples R China Hangzhou Dianzi Univ Sch Automat Hangzhou Peoples R China Guohua Hami New Energy Co Ltd Hami Peoples R China
The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via bayesian hyperparameter optimization (BH-XGBoost method) was proposed in t... 详细信息
来源: 评论