咨询与建议

限定检索结果

文献类型

  • 17 篇 期刊文献

馆藏范围

  • 17 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 15 篇 理学
    • 14 篇 统计学(可授理学、...
    • 4 篇 数学
    • 3 篇 生物学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 5 篇 工学
    • 4 篇 计算机科学与技术...
    • 1 篇 控制科学与工程
  • 2 篇 农学

主题

  • 17 篇 bayesian nonpara...
  • 2 篇 uncertainty quan...
  • 2 篇 bayesian additiv...
  • 2 篇 reversible jump ...
  • 2 篇 contraction rate...
  • 2 篇 neural networks
  • 2 篇 deep gaussian pr...
  • 2 篇 generalized addi...
  • 2 篇 rate of contract...
  • 1 篇 bayesian trees
  • 1 篇 biometric identi...
  • 1 篇 timss 2019
  • 1 篇 effect sizes
  • 1 篇 nested smoothing...
  • 1 篇 time warping
  • 1 篇 genotype-by-envi...
  • 1 篇 spatial point pr...
  • 1 篇 random order pol...
  • 1 篇 finite random se...
  • 1 篇 dynamically weig...

机构

  • 2 篇 maynooth univ in...
  • 2 篇 johns hopkins un...
  • 2 篇 texas a&m univ d...
  • 1 篇 florida state un...
  • 1 篇 univ lancaster s...
  • 1 篇 inst stat math t...
  • 1 篇 seoul natl univ ...
  • 1 篇 beijing jiaotong...
  • 1 篇 natl univ singap...
  • 1 篇 univ illinois de...
  • 1 篇 faculty of busin...
  • 1 篇 georgia hlth sci...
  • 1 篇 univ texas austi...
  • 1 篇 maynooth univ ha...
  • 1 篇 nci div canc epi...
  • 1 篇 univ london impe...
  • 1 篇 maynooth univ ha...
  • 1 篇 tech univ dortmu...
  • 1 篇 med coll georgia...
  • 1 篇 maynooth univ ha...

作者

  • 3 篇 parnell andrew c...
  • 3 篇 prado estevao b.
  • 3 篇 moral rafael a.
  • 2 篇 xie fangzheng
  • 2 篇 mallick bani k.
  • 2 篇 ryu duchwan
  • 2 篇 xu yanxun
  • 1 篇 li erning
  • 1 篇 ickstadt katja
  • 1 篇 karabatsos georg...
  • 1 篇 lee youngseon
  • 1 篇 murphy keefe
  • 1 篇 nott david j.
  • 1 篇 sarti danilo a.
  • 1 篇 mckeague iw
  • 1 篇 gianluca finocch...
  • 1 篇 schmidt-hieber j...
  • 1 篇 wang lichun
  • 1 篇 o'shea ann
  • 1 篇 liang faming

语言

  • 15 篇 英文
  • 2 篇 其他
检索条件"主题词=Bayesian nonparametric regression"
17 条 记 录,以下是1-10 订阅
排序:
Rates of contraction with respect to L2-distance for bayesian nonparametric regression
收藏 引用
ELECTRONIC JOURNAL OF STATISTICS 2019年 第2期13卷 3485-3512页
作者: Xie, Fangzheng Jin, Wei Xu, Yanxun Johns Hopkins Univ Dept Appl Math & Stat Baltimore MD 21218 USA
We systematically study the rates of contraction with respect to the integrated L-2-distance for bayesian nonparametric regression in a generic framework, and, notably, without assuming the regression function space t... 详细信息
来源: 评论
Adaptive bayesian nonparametric regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models
收藏 引用
bayesian ANALYSIS 2020年 第1期15卷 159-186页
作者: Xie, Fangzheng Xu, Yanxun Johns Hopkins Univ Dept Appl Math & Stat Baltimore MD 21218 USA
We propose a kernel mixture of polynomials prior for bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal co... 详细信息
来源: 评论
bayesian ADDITIVE regression TREES FOR GENOTYPE BY ENVIRONMENT INTERACTION MODELS
收藏 引用
ANNALS OF APPLIED STATISTICS 2023年 第3期17卷 1936-1957页
作者: Sarti, Danilo A. Prado, Estevao B. Inglis, Alan N. Dos Santos, Antonia A. L. Hurley, Catherine B. Moral, Rafael A. Parnell, Andrew C. Maynooth Univ Insight Ctr Data Analyt Maynooth Ireland Maynooth Univ Hamilton Inst Dept Math & Stat Maynooth Ireland
We propose a new class of models for the estimation of genotype by environment (GxE) interactions in plant-based genetics. Our approach, named AMBARTI, uses semiparametric bayesian additive regression trees to accurat... 详细信息
来源: 评论
ACCOUNTING FOR SHARED COVARIATES IN SEMIPARAMETRIC bayesian ADDITIVE regression TREES
收藏 引用
ANNALS OF APPLIED STATISTICS 2025年 第1期19卷 302-328页
作者: Prado, Estevao B. Parnell, Andrew C. Moral, Rafael A. Mcjames, Nathan O'shea, Ann Murphy, Keefe Univ Lancaster Sch Math Sci Lancaster England Maynooth Univ Hamilton Inst Maynooth Ireland Maynooth Univ Dept Math & Stat Maynooth Ireland Maynooth Univ Insight Ctr Data Analyt Maynooth Ireland
We propose some extensions to semiparametric models based on bayesian additive regression trees (BART). In the semiparametric BART paradigm, the response variable is approximated by a linear predictor and a BART model... 详细信息
来源: 评论
bayesian additive regression trees with model trees
收藏 引用
STATISTICS AND COMPUTING 2021年 第3期31卷 1-13页
作者: Prado, Estevao B. Moral, Rafael A. Parnell, Andrew C. Maynooth Univ Hamilton Inst Maynooth Kildare Ireland Maynooth Univ Dept Math & Stat Maynooth Kildare Ireland Maynooth Univ Insight Ctr Data Analyt Maynooth Kildare Ireland
bayesian additive regression trees (BART) is a tree-based machine learning method that has been successfully applied to regression and classification problems. BART assumes regularisation priors on a set of trees that... 详细信息
来源: 评论
Posterior Contraction for Deep Gaussian Process Priors
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2023年 24卷
作者: Finocchio, Gianluca Schmidt-Hieber, Johannes Univ Vienna Fac Business Econ & Stat A-1090 Vienna Austria Univ Twente Fac Elect Engn Math & Comp Sci NL-7522 NB Enschede Netherlands
We study posterior contraction rates for a class of deep Gaussian process priors in the nonparametric regression setting under a general composition assumption on the regression function. It is shown that the contract... 详细信息
来源: 评论
Posterior contraction for deep Gaussian process priors
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 2861-2909页
作者: Gianluca Finocchio Johannes Schmidt-Hieber Faculty of Business Economics and Statistics University of Vienna Vienna Austria Faculty of Electrical Engineering Mathematics and Computer Science University of Twente Enschede The Netherlands
We study posterior contraction rates for a class of deep Gaussian process priors in the nonparametric regression setting under a general composition assumption on the regression function. It is shown that the contract... 详细信息
来源: 评论
bayesian curve fitting for discontinuous functions using an overcomplete system with multiple kernels
收藏 引用
JOURNAL OF THE KOREAN STATISTICAL SOCIETY 2020年 第2期49卷 516-536页
作者: Lee, Youngseon Mano, Shuhei Lee, Jaeyong Samsung SDS Seoul South Korea Inst Stat Math Tachikawa Tokyo Japan Seoul Natl Univ Dept Stat Seoul South Korea
We propose a fully bayesian methodology for estimation of functions that have jump discontinuities. The proposed model is an extension of the LARK model, which enables functions to be represented by the small number o... 详细信息
来源: 评论
bayesian nonparametric regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements
收藏 引用
BIOMETRICS 2011年 第2期67卷 454-466页
作者: Ryu, Duchwan Li, Erning Mallick, Bani K. Med Coll Georgia Dept Biostat Augusta GA 30912 USA Texas A&M Univ Dept Stat College Stn TX 77843 USA
We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that... 详细信息
来源: 评论
A bayesian nonparametric meta-analysis model
收藏 引用
RESEARCH SYNTHESIS METHODS 2015年 第1期6卷 28-44页
作者: Karabatsos, George Talbott, Elizabeth Walker, Stephen G. Univ Illinois Dept Educ Psychol Program Measurement Evaluat Stat & Assessments Coll Educ Chicago IL 60607 USA Univ Illinois Dept Special Educ Coll Educ Chicago IL 60607 USA Univ Texas Austin Div Stat & Sci Computat Austin TX 78712 USA
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects mod... 详细信息
来源: 评论