This paper deals with the problem of increasing air pollution monitoring stations in Tehran city for efficient spatial prediction. As the data are multivariate and skewed, we introduce two multivariate skew models thr...
详细信息
This paper deals with the problem of increasing air pollution monitoring stations in Tehran city for efficient spatial prediction. As the data are multivariate and skewed, we introduce two multivariate skew models through developing the univariate skew Gaussian random field proposed by Zareifard and Jafari Khaledi [21]. These models provide extensions of the linear model of coregionalization for non-Gaussian data. In the bayesian framework, the optimal network design is found based on the maximum entropy criterion. A Markov chain Monte Carlo algorithm is developed to implement posterior inference. Finally, the applicability of two proposed models is demonstrated by analyzing an air pollution data set.
暂无评论