This dissertation research shows a small unmanned rotorcraft system with onboard processing and a vision sensor can produce autonomous, collision-free flight in a restricted maneuverability environment with no a prior...
详细信息
This dissertation research shows a small unmanned rotorcraft system with onboard processing and a vision sensor can produce autonomous, collision-free flight in a restricted maneuverability environment with no a priori knowledge by using a gap-aiming behavior inspired by flying animals. Current approaches to autonomous flight with small unmanned aerial systems (SUAS) concentrate on detecting and explicitly avoiding obstacles. In contrast, biology indicates that birds, bats, and insects do the opposite; they react to open spaces, or gaps in the environment, with a gap_aiming behavior. Using flying animals as inspiration a behavior-based robotics approach is taken to implement and test their observed gap-aiming behavior in three dimensions. Because biological studies were unclear whether the flying animals were reacting to the largest gap perceived, the closest gap perceived, or all of the gaps three approaches for the perceptual schema were explored in simulation: detect_closest_gap, detect_largest_gap, and detect_all_gaps . The result of these simulations was used in a proof-of-concept implementation on a 3Drobotics Solo quadrotor platform in an environment designed to represent the navigational diffi- culties found inside a restricted maneuverability environment. The motor schema is implemented with an artificial potential field to produce the action of aiming to the center of the gap. Through two sets of field trials totaling fifteen flights conducted with a small unmanned quadrotor, the gap-aiming behavior observed in flying animals is shown to produce repeatable autonomous, collision-free flight in a restricted maneuverability environment. Additionally, using the distance from the starting location to perceived gaps, the horizontal and vertical distance traveled, and the distance from the center of the gap during traversal the implementation of the gap selection approach performs as intended, the three-dimensional movement produced by the motor schema and the ac
Coordinating mobile robots are widely used in commercial and industrial settings to fulfill various tasks. However, to program the coordination among mobile robots is challenging. A coordination framework is needed to...
详细信息
Coordinating mobile robots are widely used in commercial and industrial settings to fulfill various tasks. However, to program the coordination among mobile robots is challenging. A coordination framework is needed to shield the programmer from handling low-level details of robot control and communication, while supporting flexible and cost-effective coordination at the same time. The coordination framework should also be able to well coexist with the underlying robot control. To this end, we propose the Coordination-enabled behavior-based robotics(CBBR) framework. CBBR employs Distributed Shared Memory(DSM) to support coordination. The shared memory illusion built by the DSM greatly simplifies the coordination logic. Moreover,the flexible access patterns of the DSM and the rich consistency semantics of the DSM reads and writes enable flexible and cost-effective coordination. With the coordination support from the DSM, CBBR naturally extends the classical behavior-based robotics(BBR) for robot control. From the perspective of robot control using BBR, the shared variables in the DSM act as the logical sensors capturing the status of coordination. The coordination algorithms are encapsulated into coordination behaviors. Thus, the physical environment status and the coordination status may trigger the physical and the coordination behaviors. The scheduling of both types of behaviors integrates coordination into robot control. We conduct a case study to demonstrate the use of CBBR. The performance measurements show the cost-effectiveness of coordinating mobile robots based on CBBR, in terms of time, space, and energy consumption.
Service robots have the potential of improving the quality of life and assist with people's daily activities. Such robots must be capable of operating over long periods of time, performing multiple tasks, and sche...
详细信息
Service robots have the potential of improving the quality of life and assist with people's daily activities. Such robots must be capable of operating over long periods of time, performing multiple tasks, and scheduling them appropriately for execution. In addition, service robots must be capable of dealing with tasks whose goals may be in conflict with each other and would need to determine, dynamically, which task to pursue in such a case. Adding to the complexity of the problem is the fact that some task requests may have time constraints-deadlines by which the task has to be completed. Given the dynamic nature of the environment, the robots must make decisions on what tasks to pursue in situations where there could be incomplete or missing information. The robots should also be capable of accepting requests for new tasks or services at runtime, while possibly working on another task. In order to achieve these requirements, this paper presents the Auction behavior-based Robotic Architecture that brings the following contributions: (1) it uses an auction mechanism to determine the relevance of a task to run at any given time, (2) it handles multiple user requests while dealing with potentially critical time constraints and incomplete information, (3) it enables long-term robot operation and (4) it allows for dynamic assignment of new tasks. The proposed system is validated on a physical robotic platform, the Segway RMP (R) and in simulation.
Educational robotics proposes the use of robots as a teaching resource that enables inexperienced students to approach topics in fields unrelated to robotics. In recent years, these activities have grown substantially...
详细信息
Educational robotics proposes the use of robots as a teaching resource that enables inexperienced students to approach topics in fields unrelated to robotics. In recent years, these activities have grown substantially in elementary and secondary school classrooms and also in outreach experiences to interest students in science, technology, engineering, and math (STEM) undergraduate programs. A key problem in educational robotics is providing a satisfactory, adequate, easy-to-use interface between an inexpert public and the robots. This paper presents a behavior-based application for programming robots and the design of robotic-centered courses and other outreach activities. Evaluation data show that over 90% of students find it easy to use. These activities are part of a comprehensive outreach program conducted by the Exact and Natural Science Faculty of the University of Buenos Aires, Argentina (FCEN-UBA). Statistical data show that since 2009 over 35% of new students at the FCEN-UBA have participated in some outreach activity, suggesting their significant impact on student enrollment in STEM-related programs.
Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the...
详细信息
Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF). In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF) method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS) method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF.
From an early stage in their development, human infants show a profound drive to explore the objects around them. Research in psychology has shown that this exploration is fundamental for learning the names of objects...
详细信息
From an early stage in their development, human infants show a profound drive to explore the objects around them. Research in psychology has shown that this exploration is fundamental for learning the names of objects and object categories. To address this problem in robotics, this paper presents a behavior-grounded approach that enables a robot to recognize the semantic labels of objects using its own behavioral interaction with them. To test this method, our robot interacted with 100 different objects grouped according to 20 different object categories. The robot performed 10 different behaviors on them, while using three sensory modalities (vision, proprioception and audio) to detect any perceptual changes. The results show that the robot was able to use multiple sensorimotor contexts in order to recognize a large number of object categories. Furthermore, the category recognition model presented in this paper was able to identify sensorimotor contexts that can be used to detect specific categories. Most importantly, the robot's model was able to reduce exploration time by half by dynamically selecting which exploratory behavior should be applied next when classifying a novel object. (C) 2012 Elsevier B.V. All rights reserved.
Introduce a robust and flexible mobile robot control system. Motion Description Language is brought in behavior-based robotics. The behavior-based robotics does well in controlling mobile robot. Using Motion Descripti...
详细信息
ISBN:
(纸本)9781424413850
Introduce a robust and flexible mobile robot control system. Motion Description Language is brought in behavior-based robotics. The behavior-based robotics does well in controlling mobile robot. Using Motion Description Language, not only the interactions between discrete and continuous dynamics existing in a robotics system can be described, but the complexin: of steering a robot can also be measured quantitatively. In this paper, the problem of object-following by nonholonomic wheeled mobile robots is studied using this method, and a matlab simulative results verify the validity of this method in the end.
behavior-based systems form the basis of autonomous control for many robots, but there is a need to ensure these systems respond in a timely manner. Unexpected latency can adversely affect the quality of an autonomous...
详细信息
behavior-based systems form the basis of autonomous control for many robots, but there is a need to ensure these systems respond in a timely manner. Unexpected latency can adversely affect the quality of an autonomous system's operations, which in turn can affect lives and property in the real-world. A robots ability to detect and handle external events is paramount to providing safe and dependable operation. This paper presents a concurrent version of a behavior-based system called the Real-Time Unified behavior Framework, which establishes a responsive basis of behavior-based control that does not bind the system developer to any single behavior hierarchy. The concurrent design of the framework is based on modern software engineering principles and only specifies a functional interface for components, leaving the implementation details to the developers. In addition, the individual behaviors are executed by a real-time scheduler, guaranteeing the responsiveness of routines that are critical to the autonomous system's safe operation. Experimental results demonstrate the ability of this approach to provide predictable temporal operation, independent of fluctuations in high-level computational loads.
This paper addresses the problem of self-detection by a robot. The paper describes a methodology for autonomous learning of the characteristic delay between motor commands (efferent signals) and observed movements of ...
详细信息
This paper addresses the problem of self-detection by a robot. The paper describes a methodology for autonomous learning of the characteristic delay between motor commands (efferent signals) and observed movements of visual stimuli (afferent signals). The robot estimates its own efferent-afferent delay from self-observation data gathered while performing motor babbling, i.e., random rhythmic movements similar to the primary circular reactions described by Piaget. After the efferent-afferent delay is estimated, the robot imprints on that delay and can later use it to successfully classify visual stimuli as either "self" or "other." Results from robot experiments performed in environments with increasing degrees of difficulty are reported.
Autonomous underwater vehicles (AUVs) have gained more interest in recent years for military as well as civilian applications. One potential application of AUVs is for the purpose of undersea surveillance. As research...
详细信息
Autonomous underwater vehicles (AUVs) have gained more interest in recent years for military as well as civilian applications. One potential application of AUVs is for the purpose of undersea surveillance. As research into undersea surveillance using AUVs progresses, issues arise as to how an AUV acquires, acts on, and shares information about the undersea battle space. These issues naturally touch on aspects of vehicle autonomy and underwater communications, and need to be resolved through a spiral development process that includes at sea experimentation. This paper presents a recent AUV implementation for active anti-submarine warfare tested at sea in the summer of 2010. On-board signal processing capabilities and an adaptive behavior are discussed in both a simulation and experimental context. The implications for underwater surveillance using AUVs are discussed.
暂无评论