We propose a novel multi-level thresholding method for unsupervised separation between objects and background from a natural color image using the concept of the minimum cross entropy (MCE). MCE based thresholding tec...
详细信息
We propose a novel multi-level thresholding method for unsupervised separation between objects and background from a natural color image using the concept of the minimum cross entropy (MCE). MCE based thresholding techniques are widely popular for segmenting grayscale images. Color image segmentation is still a challenging field as it involves 3-D histogram unlike the 1-D histogram of grayscale images. Effectiveness of entropy based multi-level thresholding for color image is yet to be explored and this paper presents a humble contribution in this context. We have used differential evolution (DE), a simple yet efficient evolutionary algorithm of current interest, to improve the computation time and robustness of the proposed algorithm. The performance of DE is also investigated extensively through comparison with other well-known nature inspired global optimization techniques like genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The proposed method is evaluated by comparing it with seven other prominent algorithms both qualitatively and quantitatively using a well known benchmark suite - the Barkley segmentationdataset (BSDS300) with 300 distinct images. Such comparison reflects the efficiency of our algorithm (C) 2014 Published by Elsevier B.V.
Multilevel thresholding amounts to segmenting a gray-level image into several distinct regions. This paper presents a 2D histogram based multilevel thresholding approach to improve the separation between objects. Rece...
详细信息
Multilevel thresholding amounts to segmenting a gray-level image into several distinct regions. This paper presents a 2D histogram based multilevel thresholding approach to improve the separation between objects. Recent studies indicate that the results obtained with 2D histogram oriented approaches are superior to those obtained with 1D histogram based techniques in the context of bi-level thresholding. Here, a method to incorporate 2D histogram related information for generalized multilevel thresholding is proposed using the maximum Tsallis entropy. Differential evolution (DE), a simple yet efficient evolutionary algorithm of current interest, is employed to improve the computational efficiency of the proposed method. The performance of DE is investigated extensively through comparison with other well-known nature inspired global optimization techniques such as genetic algorithm, particle swarm optimization, artificial bee colony, and simulated annealing. In addition, the outcome of the proposed method is evaluated using a well known benchmark-the Berkley segmentation data set (BSDS300) with 300 distinct images.
暂无评论