咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 数学
    • 1 篇 生物学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 工学
    • 3 篇 计算机科学与技术...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 11 篇 bi-level variabl...
  • 4 篇 group bridge
  • 3 篇 penalized regres...
  • 2 篇 semiparametric t...
  • 2 篇 group regulariza...
  • 1 篇 personalized med...
  • 1 篇 ratemaking
  • 1 篇 sparse models
  • 1 篇 estimation consi...
  • 1 篇 health care dema...
  • 1 篇 mixture cure mod...
  • 1 篇 m-estimation
  • 1 篇 zero-inflated po...
  • 1 篇 bayesian regular...
  • 1 篇 bayesian variabl...
  • 1 篇 composite mcp
  • 1 篇 dca
  • 1 篇 composite penali...
  • 1 篇 group lasso
  • 1 篇 logistic regress...

机构

  • 2 篇 msd china dept b...
  • 2 篇 harvard th chan ...
  • 2 篇 broad inst mit &...
  • 2 篇 icahn sch med mt...
  • 2 篇 univ calgary dep...
  • 1 篇 univ calif san f...
  • 1 篇 kansas state uni...
  • 1 篇 med coll wiscons...
  • 1 篇 xiamen univ sch ...
  • 1 篇 nbcuniversal ny ...
  • 1 篇 inst univ france...
  • 1 篇 univ connecticut...
  • 1 篇 med coll wiscons...
  • 1 篇 jp morgan chase ...
  • 1 篇 harvard th chan ...
  • 1 篇 univ iowa dept s...
  • 1 篇 univ north carol...
  • 1 篇 jp morgan chase ...
  • 1 篇 broad inst & har...
  • 1 篇 univ iowa dept r...

作者

  • 3 篇 mallick himel
  • 2 篇 chatterjee sapta...
  • 2 篇 garai broti
  • 2 篇 lu xuewen
  • 2 篇 chowdhury shraba...
  • 2 篇 banerjee prithis...
  • 2 篇 wu jingjing
  • 2 篇 zhong wenyan
  • 2 篇 seetharaman indu
  • 1 篇 fang kuangnan
  • 1 篇 jiao feiran
  • 1 篇 lin ching-long
  • 1 篇 kim mi-ok
  • 1 篇 dinh tao pham
  • 1 篇 he yizeng
  • 1 篇 wang chengbin
  • 1 篇 saber wael
  • 1 篇 kim soyoung
  • 1 篇 zheng chenlu
  • 1 篇 ahn kwang woo

语言

  • 11 篇 英文
检索条件"主题词=Bi-level variable selection"
11 条 记 录,以下是1-10 订阅
排序:
bi-level variable selection in semiparametric transformation models with right-censored data
收藏 引用
COMPUTATIONAL STATISTICS 2021年 第3期36卷 1661-1692页
作者: Zhong, Wenyan Lu, Xuewen Wu, Jingjing Univ Calgary Dept Math & Stat Calgary AB T2N 1N4 Canada MSD China Dept Biostat & Res Decis Sci Shanghai 200233 Peoples R China
In this article, we investigate bi-level variable selection approaches in semiparametric transformation models when a grouping structure of covariates is available. This large class of transformation models includes t... 详细信息
来源: 评论
A high-dimensional M-estimator framework for bi-level variable selection
收藏 引用
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS 2022年 第3期74卷 559-579页
作者: Luo, bin Gao, Xiaoli Duke Univ Dept Biostat & Bioinformat 2424 Erwin Rd Durham NC 27705 USA Univ North Carolina Greensboro Dept Math & Stat 116 Petty Bldg Greensboro NC 27402 USA
In high-dimensional data analysis, bi-level sparsity is often assumed when covariates function group-wisely and sparsity can appear either at the group level or within certain groups. In such cases, an ideal model sho... 详细信息
来源: 评论
Bayesian group bridge for bi-level variable selection
收藏 引用
COMPUTATIONAL STATISTICS & DATA ANALYSIS 2017年 110卷 115-133页
作者: Mallick, Himel Yi, Nengjun Harvard TH Chan Sch Publ Hlth Dept Biostat 655 Huntington Ave Boston MA 02115 USA Broad Inst & Harvard Program Med & Populat Genet Cambridge MA 02142 USA Univ Alabama Birmingham Sch Publ Hlth Dept Biostat Sect Stat Genet 1665 Univ Blvd Birmingham AL 35294 USA
A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic vari... 详细信息
来源: 评论
DCA based approaches for bi-level variable selection and application for estimate multiple sparse covariance matrices
收藏 引用
NEUROCOMPUTING 2021年 466卷 162-177页
作者: Le Thi, Hoai An Phan, Duy Nhat Dinh, Tao Pham Univ Lorraine Dept IA LGIPM F-57000 Metz France Inst Univ France IUF Paris France Univ Normandie Lab Math INSA Rouen Caen France
variable selection plays an important role in analyzing high dimensional data and is a fundamental problem in machine learning. When the data possesses certain group structures in which individual variables are also m... 详细信息
来源: 评论
bi-level variable selection in semiparametric transformation mixture cure models for right-censored data
收藏 引用
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION 2023年 第7期52卷 3006-3025页
作者: Wu, Jingjing Lu, Xuewen Zhong, Wenyan Univ Calgary Dept Math & Stat Calgary AB T2N 1N4 Canada MSD China Dept Biostat & Res Decis Sci Shanghai Peoples R China
We investigate the bi-level variable selection problem in semiparametric transformation mixture cure models (STMCM). In this type of mixture cure models, we consider a class of semiparametric transformation models for... 详细信息
来源: 评论
Consistent bi-level variable selection via composite group bridge penalized regression
Consistent bi-level variable selection via composite group b...
收藏 引用
作者: Seetharaman, Indu Kansas State University
学位级别:master
We study the composite group bridge penalized regression methods for conducting bilevel variable selection in high dimensional linear regression models with a diverging number of predictors. The proposed method combin... 详细信息
来源: 评论
Optimal treatment regimes for competing risk data using doubly robust outcome weighted learning with bi-level variable selection
收藏 引用
COMPUTATIONAL STATISTICS & DATA ANALYSIS 2021年 158卷 107167页
作者: He, Yizeng Kim, Soyoung Kim, Mi-Ok Saber, Wael Ahn, Kwang Woo Med Coll Wisconsin Div Biostat Milwaukee WI 53226 USA Univ Calif San Francisco Dept Epidemiol & Biostat San Francisco CA 94143 USA Med Coll Wisconsin Div Hematol & Oncol Milwaukee WI 53226 USA
The goal of the optimal treatment regime is maximizing treatment benefits via personalized treatment assignments based on the observed patient and treatment characteristics. Parametric regression-based outcome learnin... 详细信息
来源: 评论
Group regularization for zero-inflated negative binomial regression models with an application to health care demand in Germany
收藏 引用
STATISTICS IN MEDICINE 2018年 第20期37卷 3012-3026页
作者: Chatterjee, Saptarshi Chowdhury, Shrabanti Mallick, Himel Banerjee, Prithish Garai, Broti Northern Illinois Univ Div Stat Dept Math Sci De Kalb IL 60115 USA Wayne State Univ Ctr Mol Med & Genet Sch Med Detroit MI 48202 USA Harvard TH Chan Sch Publ Hlth Dept Biostat Boston MA 02115 USA Broad Inst MIT & Harvard Program Med & Populat Genet Cambridge MA 02142 USA JP Morgan Chase & Co New York NY 10004 USA Monsanto Co Chesterfield MO 63017 USA Icahn Sch Med Mt Sinai Dept Genet & Genom Sci New York NY 10029 USA IQVIA Plymouth Meeting PA 19462 USA
In many biomedical applications, covariates are naturally grouped, with variables in the same group being systematically related or statistically correlated. Under such settings, variable selection must be conducted a... 详细信息
来源: 评论
LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION
收藏 引用
ANNALS OF APPLIED STATISTICS 2016年 第4期10卷 1880-1906页
作者: Chen, Kun Hoffman, Eric A. Seetharaman, Indu Jiao, Feiran Lin, Ching-Long Chan, Kung-Sik Univ Connecticut Dept Stat Storrs CT 06029 USA Univ Iowa Dept Radiol Iowa City IA 52242 USA Kansas State Univ Dept Stat Manhattan KS 66506 USA Univ Iowa Dept Stat & Actuarial Sci Iowa City IA 52242 USA Univ Iowa Dept Mech & Ind Engn Iowa City IA 52242 USA
The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angl... 详细信息
来源: 评论
Credit scoring of micro and small entrepreneurial firms in China
收藏 引用
INTERNATIONAL ENTREPRENEURSHIP AND MANAGEMENT JOURNAL 2021年 第1期17卷 29-43页
作者: Wang, Chengbin Fang, Kuangnan Zheng, Chenlu Xu, Hechao Li, Zewei Taizhou Coll Univ Zhejiang Taizhou Small Micro Finance Inst Taizhou Peoples R China Xiamen Univ Sch Econ Xiamen Peoples R China Xiamen Univ Sch Management Xiamen Peoples R China
It is difficult for micro and small entrepreneurial firms (MSEFs) to access external financing from formal financial institutions because financial institutions cannot obtain sufficient and reliable credit information... 详细信息
来源: 评论