咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 5 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 冶金工程
    • 1 篇 信息与通信工程
  • 2 篇 理学
    • 2 篇 数学
  • 1 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 13 篇 big data modelin...
  • 3 篇 big data analyti...
  • 3 篇 big data toolkit...
  • 2 篇 big data
  • 2 篇 end-user tools
  • 2 篇 domain specific ...
  • 1 篇 multi-objective ...
  • 1 篇 quality function...
  • 1 篇 highly correlate...
  • 1 篇 fault diagnosis
  • 1 篇 support vector m...
  • 1 篇 deep learning
  • 1 篇 fusion modeling
  • 1 篇 investors sentim...
  • 1 篇 genetic associat...
  • 1 篇 random vector fu...
  • 1 篇 manufacturing en...
  • 1 篇 importance measu...
  • 1 篇 dimensionality r...
  • 1 篇 neural networks

机构

  • 2 篇 deakin univ sch ...
  • 2 篇 univ auckland fa...
  • 1 篇 yancheng teacher...
  • 1 篇 deakin univ isnt...
  • 1 篇 yancheng teacher...
  • 1 篇 univ guilan fac ...
  • 1 篇 univ auckland au...
  • 1 篇 guangdong univ t...
  • 1 篇 monash univ clay...
  • 1 篇 swinburne univ t...
  • 1 篇 dalian maritime ...
  • 1 篇 univ macau fac s...
  • 1 篇 russian federat ...
  • 1 篇 swinburne univ t...
  • 1 篇 deakin univ appl...
  • 1 篇 nanjing univ aer...
  • 1 篇 natl univ singap...
  • 1 篇 monash univ fac ...
  • 1 篇 northeastern uni...
  • 1 篇 northeastern uni...

作者

  • 3 篇 abdelrazek moham...
  • 3 篇 grundy john
  • 3 篇 he qiang
  • 3 篇 khalajzadeh hour...
  • 2 篇 hosking john
  • 2 篇 simmons andrew j...
  • 1 篇 bab-hadiashar al...
  • 1 篇 teplova tamara
  • 1 篇 gubareva mariya
  • 1 篇 sun jie
  • 1 篇 xie naiming
  • 1 篇 esch thomas
  • 1 篇 chen c. l. phili...
  • 1 篇 zia adil
  • 1 篇 zhang dianhua
  • 1 篇 ramakrishna seer...
  • 1 篇 jamali ali
  • 1 篇 xiao yi
  • 1 篇 goh mark
  • 1 篇 yuan xiaofeng

语言

  • 13 篇 英文
检索条件"主题词=Big Data Modeling"
13 条 记 录,以下是1-10 订阅
排序:
A Novel Hybrid Machine Learning Algorithm for Limited and big data modeling With Application in Industry 4.0
收藏 引用
IEEE ACCESS 2020年 8卷 111381-111393页
作者: Khayyam, Hamid Jamali, Ali Bab-Hadiashar, Alireza Esch, Thomas Ramakrishna, Seeram Jalili, Mahdi Naebe, Minoo RMIT Univ Sch Engn Melbourne Vic 3000 Australia Univ Guilan Fac Mech Engn Rasht *** Iran FH Aachen Univ Appl Sci Mech Engn D-52066 Aachen Germany Natl Univ Singapore Dept Mech Engn Singapore 119077 Singapore Deakin Univ Isnt Frontier Mat Burwood Vic 3217 Australia
To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employ... 详细信息
来源: 评论
Manufacturing big data modeling Algorithm Based on GM (1,1) - LSTM and Its Application in Sales Forecasting  12
Manufacturing Big Data Modeling Algorithm Based on GM (1,1) ...
收藏 引用
IEEE 12th data Driven Control and Learning Systems Conference (DDCLS)
作者: Long, Yinren Xiao, Yi Ren, Hongru Lu, Renquan Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China Guangdong Univ Technol Guangdong Prov Key Lab Intelligent Decis & Cooper Guangzhou 510006 Peoples R China
It is a new period for the development of automobile industry, the economic situation is complex and changing, and the policies of automobile industry are frequently issued, so accurate prediction of automobile sales ... 详细信息
来源: 评论
Industrial big data-Driven modeling and Prediction for Hot-Rolled Strip Crown with Multigrade and Multispecification data
收藏 引用
STEEL RESEARCH INTERNATIONAL 2024年 第7期95卷
作者: Xu, Dewei Ding, Chengyan Liu, Yu Sun, Jie Peng, Wen Zhang, Dianhua Northeastern Univ State Key Lab Rolling & Automat Shenyang 110819 Peoples R China
In the field of hot rolling big data, the presence of different steel types, specifications, and data heterogeneity poses significant challenges to the accuracy and stability of using single machine learning regressio... 详细信息
来源: 评论
Grey linguistic term sets for decision-making
收藏 引用
ANNALS OF OPERATIONS RESEARCH 2025年 第1期348卷 489-509页
作者: Du, Junliang Xie, Naiming Liu, Sifeng Goh, Mark Nanjing Univ Aeronaut & Astronaut Coll Econ & Management Nanjing 211106 Peoples R China Natl Univ Singapore NUS Business Sch Singapore 119613 Singapore Natl Univ Singapore Logist Inst Asia Pacific Singapore 119613 Singapore
In the era of big data, decision-making has become more complex and more uncertain. Faced with this situation, fuzzy linguistic approach may be an information representation model that is closer to natural language an... 详细信息
来源: 评论
BiDaML in Practice: Collaborative modeling of big data Analytics Application Requirements  15th
BiDaML in Practice: Collaborative Modeling of Big Data Analy...
收藏 引用
15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE)
作者: Khalajzadeh, Hourieh Simmons, Andrew J. Verma, Tarun Abdelrazek, Mohamed Grundy, John Hosking, John He, Qiang Ratnakanthan, Prasanna Zia, Adil Law, Meng Monash Univ Clayton Vic 3800 Australia Deakin Univ Burwood Vic 3125 Australia Univ Auckland Auckland 1010 New Zealand Swinburne Univ Hawthorn Vic 3122 Australia Alfred Hlth Melbourne Vic 3000 Australia
Using data analytics to improve industrial planning and operations has become increasingly popular and data scientists are more and more in demand. However, complex data analytics-based software development is challen... 详细信息
来源: 评论
Bidimensionally partitioned online sequential broad learning system for large-scale data stream modeling
收藏 引用
SCIENTIFIC REPORTS 2024年 第1期14卷 1-19页
作者: Guo, Wei Yu, Jianjiang Zhou, Caigen Yuan, Xiaofeng Wang, Zhanxiu Yancheng Teachers Univ Key Lab Child Cognit Dev & Mental Hlth Jiangsu Prov Univ Yancheng 224002 Peoples R China Yancheng Teachers Univ Coll Informat Engn Yancheng 224002 Peoples R China
Incremental broad learning system (IBLS) is an effective and efficient incremental learning method based on broad learning paradigm. Owing to its streamlined network architecture and flexible dynamic update scheme, IB... 详细信息
来源: 评论
Random forest framework customized to handle highly correlated variables: an extensive experimental study applied to feature selection in genetic data  5
Random forest framework customized to handle highly correlat...
收藏 引用
5th IEEE International Conference on data Science and Advanced Analytics (IEEE DSAA)
作者: Sinoquet, Christine Mekhnacha, Kamel Univ Nantes LS2N UMR CNRS 6004 Nantes France Probayes Grenoble France
The random forest model is a popular framework used in classification and regression. In cases where high correlations exist within the data, it may be beneficial to capture these dependencies through latent variables... 详细信息
来源: 评论
BiDaML: A Suite of Visual Languages for Supporting End-user data Analytics  8
BiDaML: A Suite of Visual Languages for Supporting End-user ...
收藏 引用
IEEE International Congress on Internet of Things (IEEE ICIOT) / IEEE International Congress on big data (IEEE bigdata Congress) held as part of IEEE World Congress on Services (IEEE SERVICES)
作者: Khalajzadeh, Hourieh Abdelrazek, Mohamed Grundy, John Hosking, John G. He, Qiang Monash Univ Fac Informat Technol Clayton Vic Australia Deakin Univ Sch Informat Technol Geelong Vic Australia Univ Auckland Fac Sci Auckland New Zealand Swinburne Univ Technol Sch Software & Elect Engn Hawthorn Vic Australia
We introduce big data Analytics modeling Languages (BiDaML), a novel integrated suite of visual languages aimed at supporting end users during the process of designing big data analytics solutions. BiDaML comprises fi... 详细信息
来源: 评论
Map-Reduce Decentralized PCA for big data Monitoring and Diagnosis of Faults in High-Speed Train Bearings
Map-Reduce Decentralized PCA for Big Data Monitoring and Dia...
收藏 引用
10th IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM)
作者: Liu, Qiang Kong, Dezhi Qin, S. Joe Xu, Quan Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Liaoning Peoples R China Univ Southern Calif Mork Family Dept Chem Engn & Mat Sci Los Angeles CA 90089 USA
Real-time fault detection and diagnosis of high speed trains is essential for the operation safety. Traditional methods mainly employ rule-based alarms to detect faults when the measured single variable deviates too f... 详细信息
来源: 评论
Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018年 第1期29卷 10-24页
作者: Chen, C. L. Philip Liu, Zhulin Univ Macau Fac Sci & Technol Dept Comp & Informat Sci Macau 99999 Peoples R China Dalian Maritime Univ Dalian 116026 Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100080 Peoples R China
Broad Learning System (BLS) that aims to offer an alternative way of learning in deep structure is proposed in this paper. Deep structure and learning suffer from a time-consuming training process because of a large n... 详细信息
来源: 评论