咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 5 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 冶金工程
    • 1 篇 信息与通信工程
  • 2 篇 理学
    • 2 篇 数学
  • 1 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 13 篇 big data modelin...
  • 3 篇 big data analyti...
  • 3 篇 big data toolkit...
  • 2 篇 big data
  • 2 篇 end-user tools
  • 2 篇 domain specific ...
  • 1 篇 multi-objective ...
  • 1 篇 quality function...
  • 1 篇 highly correlate...
  • 1 篇 fault diagnosis
  • 1 篇 support vector m...
  • 1 篇 deep learning
  • 1 篇 fusion modeling
  • 1 篇 investors sentim...
  • 1 篇 genetic associat...
  • 1 篇 random vector fu...
  • 1 篇 manufacturing en...
  • 1 篇 importance measu...
  • 1 篇 dimensionality r...
  • 1 篇 neural networks

机构

  • 2 篇 deakin univ sch ...
  • 2 篇 univ auckland fa...
  • 1 篇 yancheng teacher...
  • 1 篇 deakin univ isnt...
  • 1 篇 yancheng teacher...
  • 1 篇 univ guilan fac ...
  • 1 篇 univ auckland au...
  • 1 篇 guangdong univ t...
  • 1 篇 monash univ clay...
  • 1 篇 swinburne univ t...
  • 1 篇 dalian maritime ...
  • 1 篇 univ macau fac s...
  • 1 篇 russian federat ...
  • 1 篇 swinburne univ t...
  • 1 篇 deakin univ appl...
  • 1 篇 nanjing univ aer...
  • 1 篇 natl univ singap...
  • 1 篇 monash univ fac ...
  • 1 篇 northeastern uni...
  • 1 篇 northeastern uni...

作者

  • 3 篇 abdelrazek moham...
  • 3 篇 grundy john
  • 3 篇 he qiang
  • 3 篇 khalajzadeh hour...
  • 2 篇 hosking john
  • 2 篇 simmons andrew j...
  • 1 篇 bab-hadiashar al...
  • 1 篇 teplova tamara
  • 1 篇 gubareva mariya
  • 1 篇 sun jie
  • 1 篇 xie naiming
  • 1 篇 esch thomas
  • 1 篇 chen c. l. phili...
  • 1 篇 zia adil
  • 1 篇 zhang dianhua
  • 1 篇 ramakrishna seer...
  • 1 篇 jamali ali
  • 1 篇 xiao yi
  • 1 篇 goh mark
  • 1 篇 yuan xiaofeng

语言

  • 13 篇 英文
检索条件"主题词=Big Data Modeling"
13 条 记 录,以下是11-20 订阅
排序:
Random forest framework customized to handle highly correlated variables: an extensive experimental study applied to feature selection in genetic data  5
Random forest framework customized to handle highly correlat...
收藏 引用
5th IEEE International Conference on data Science and Advanced Analytics (IEEE DSAA)
作者: Sinoquet, Christine Mekhnacha, Kamel Univ Nantes LS2N UMR CNRS 6004 Nantes France Probayes Grenoble France
The random forest model is a popular framework used in classification and regression. In cases where high correlations exist within the data, it may be beneficial to capture these dependencies through latent variables... 详细信息
来源: 评论
Map-Reduce Decentralized PCA for big data Monitoring and Diagnosis of Faults in High-Speed Train Bearings
Map-Reduce Decentralized PCA for Big Data Monitoring and Dia...
收藏 引用
10th IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM)
作者: Liu, Qiang Kong, Dezhi Qin, S. Joe Xu, Quan Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Liaoning Peoples R China Univ Southern Calif Mork Family Dept Chem Engn & Mat Sci Los Angeles CA 90089 USA
Real-time fault detection and diagnosis of high speed trains is essential for the operation safety. Traditional methods mainly employ rule-based alarms to detect faults when the measured single variable deviates too f... 详细信息
来源: 评论
Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018年 第1期29卷 10-24页
作者: Chen, C. L. Philip Liu, Zhulin Univ Macau Fac Sci & Technol Dept Comp & Informat Sci Macau 99999 Peoples R China Dalian Maritime Univ Dalian 116026 Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100080 Peoples R China
Broad Learning System (BLS) that aims to offer an alternative way of learning in deep structure is proposed in this paper. Deep structure and learning suffer from a time-consuming training process because of a large n... 详细信息
来源: 评论