咨询与建议

限定检索结果

文献类型

  • 18 篇 期刊文献
  • 3 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 14 篇 计算机科学与技术...
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 5 篇 理学
    • 4 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 生物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 22 篇 big data optimiz...
  • 3 篇 huge-scale optim...
  • 3 篇 eeg signals
  • 3 篇 iteration comple...
  • 3 篇 partial separabi...
  • 2 篇 multi-objective ...
  • 2 篇 abc algorithm
  • 2 篇 distributed coor...
  • 2 篇 large-scale opti...
  • 2 篇 expected separab...
  • 2 篇 support vector m...
  • 2 篇 empirical risk m...
  • 2 篇 evolutionary mul...
  • 2 篇 signal decomposi...
  • 2 篇 composite object...
  • 2 篇 nsga-iii
  • 2 篇 convex optimizat...
  • 2 篇 communication co...
  • 1 篇 internet of thin...
  • 1 篇 memetic algorith...

机构

  • 2 篇 qingdao univ tec...
  • 2 篇 univ edinburgh s...
  • 2 篇 ocean univ china...
  • 1 篇 zagazig univ fac...
  • 1 篇 guangxi key labo...
  • 1 篇 ondokuz mayis un...
  • 1 篇 univ innsbruck d...
  • 1 篇 nanchang inst te...
  • 1 篇 northeast normal...
  • 1 篇 lehigh universit...
  • 1 篇 univ allahabad d...
  • 1 篇 department of st...
  • 1 篇 department of co...
  • 1 篇 ondokuz mayis un...
  • 1 篇 open text corp m...
  • 1 篇 konya tech univ ...
  • 1 篇 college of artif...
  • 1 篇 selcuk univ kulu...
  • 1 篇 univ missouri de...
  • 1 篇 selcuk univ kony...

作者

  • 4 篇 aslan selcuk
  • 2 篇 richtarik peter
  • 2 篇 yi jiao-hong
  • 2 篇 wang gai-ge
  • 2 篇 dong junyu
  • 2 篇 takac martin
  • 2 篇 alavi amir h.
  • 1 篇 uymaz sait ali
  • 1 篇 ismail hossam
  • 1 篇 liu bo
  • 1 篇 wang wenjun
  • 1 篇 xue yu
  • 1 篇 bougrine saad
  • 1 篇 wang hui
  • 1 篇 cordero jose a.
  • 1 篇 agarwal renu
  • 1 篇 wang liang
  • 1 篇 sarker ruhul
  • 1 篇 sun hui
  • 1 篇 zhao xiande

语言

  • 21 篇 英文
  • 1 篇 土耳其文
检索条件"主题词=Big Data Optimization"
22 条 记 录,以下是1-10 订阅
排序:
An improved NSGA-III algorithm with adaptive mutation operator for big data optimization problems
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2018年 88卷 571-585页
作者: Yi, Jiao-Hong Deb, Suash Dong, Junyu Alavi, Amir H. Wang, Gai-Ge Qingdao Univ Technol Sch Informat & Control Engn Qingdao 266520 Peoples R China Victoria Univ Decis Sci & Modeling Program Melbourne Vic 8001 Australia Ocean Univ China Dept Comp Sci & Technol Qingdao 266100 Peoples R China Univ Missouri Dept Civil & Environm Engn Columbia MO 65211 USA Jiangsu Normal Univ Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China Northeast Normal Univ Inst Algorithm & Big Data Anal Changchun 130117 Jilin Peoples R China Northeast Normal Univ Sch Comp Sci & Informat Technol Changchun 130117 Jilin Peoples R China Jilin Univ Minist Educ Key Lab Symbol Computat & Knowledge Engn Changchun 130012 Jilin Peoples R China
One of the major challenges of solving big data optimization problems via traditional multi-objective evolutionary algorithms (MOEAs) is their high computational costs. This issue has been efficiently tackled by non -... 详细信息
来源: 评论
jMetalSP: A framework for dynamic multi-objective big data optimization
收藏 引用
APPLIED SOFT COMPUTING 2018年 69卷 737-748页
作者: Barba-Gonzalez, Cristobal Garcia-Nieto, Jose Nebro, Antonio J. Cordero, Jose A. Durillo, Juan J. Navas-Delgado, Ismael Aldana-Montesa, Jose F. Univ Malaga Dept Lenguajes & Ciencias Comp Malaga Spain European Org Nucl Res CERN Geneva Switzerland Univ Innsbruck Distributed & Parallel Syst Grp Innsbruck Austria
Multi-objective metaheuristics have become popular techniques for dealing with complex optimization problems composed of a number of conflicting functions. Nowadays, we are in the big data era, so metaheuristics must ... 详细信息
来源: 评论
Differential evolution framework for big data optimization
收藏 引用
MEMETIC COMPUTING 2016年 第1期8卷 17-33页
作者: Elsayed, Saber Sarker, Ruhul Univ New S Wales Sch Engn & Informat Technol Canberra ACT Australia Zagazig Univ Fac Comp & Informat Zagazig Egypt
During the last two decades, dealing with big data problems has become a major issue for many industries. Although, in recent years, differential evolution has been successful in solving many complex optimization prob... 详细信息
来源: 评论
A comparative study between artificial bee colony (ABC) algorithm and its variants on big data optimization
收藏 引用
MEMETIC COMPUTING 2020年 第2期12卷 129-150页
作者: Aslan, Selcuk Ondokuz Mayis Univ Samsun Turkey
The big data term and its formal definition have changed the properties of some of the computational problems. One of the problems for which the fundamental properties change with the existence of the big data is the ... 详细信息
来源: 评论
Fireworks algorithm framework for big data optimization
收藏 引用
MEMETIC COMPUTING 2016年 第4期8卷 333-347页
作者: El Majdouli, Mohamed Amine Rbouh, Ismail Bougrine, Saad El Benani, Bouazza El Imrani, Abdelhakim Ameur Mohammed V Univ Fac Sci Concept & Syst Lab Rabat Morocco Mohammed V Univ Comp Sci Res Lab Fac Sci Rabat Morocco
This paper presents a novel optimization framework based on the Fireworks Algorithm for big data optimization problems. Indeed, the proposed framework is composed of two optimization algorithms. A single objective Fir... 详细信息
来源: 评论
A hybrid multi-objective firefly algorithm for big data optimization
收藏 引用
APPLIED SOFT COMPUTING 2018年 69卷 806-815页
作者: Wang, Hui Wang, Wenjun Cui, Laizhong Sun, Hui Zhao, Jia Wang, Yun Xue, Yu Nanchang Inst Technol Jiangxi Prov Key Lab Water Informat Cooperat Sens Nanchang 330099 Jiangxi Peoples R China Nanchang Inst Technol Sch Informat Engn Nanchang 330099 Jiangxi Peoples R China Nanchang Inst Technol Sch Business Adm Nanchang 330099 Jiangxi Peoples R China Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Nanjing Univ Informat Sci & Technol Sch Comp & Software Nanjing 210044 Jiangsu Peoples R China
Multi-objective evolutionary algorithms (MOEAs) have shown good performance on many benchmark and real world multi-objective optimization problems. However, MOEAs may suffer from some difficulties when solving big dat... 详细信息
来源: 评论
A genetic Artificial Bee Colony algorithm for signal reconstruction based big data optimization
收藏 引用
APPLIED SOFT COMPUTING 2020年 第0期88卷 106053-000页
作者: Aslan, Selcuk Karaboga, Dervis Ondokuz Mayis Univ Dept Comp Engn Samsun Turkey Erciyes Univ Dept Comp Engn Kayseri Turkey King Abdulaziz Univ Fac Comp & Informat Technol Dept Informat Syst Jeddah Saudi Arabia
In recent years, the researchers have witnessed the changes or transformations driven by the existence of the big data on the definitions, complexities and future directions of the real world optimization problems. An... 详细信息
来源: 评论
Improved Particle Swarm optimization on Based Quantum Behaved Framework for big data optimization
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第3期55卷 2551-2586页
作者: Bas, Emine Selcuk Univ Kulu Vocat Sch TR-42075 Konya Turkey
In recent times, big data has become an essential concern with the rapid increase of digitalization. The problems that find solutions to the problems of finding and evaluating the features of big data are called optim... 详细信息
来源: 评论
Parallel coordinate descent methods for big data optimization
收藏 引用
MATHEMATICAL PROGRAMMING 2016年 第1-2期156卷 433-484页
作者: Richtarik, Peter Takac, Martin Univ Edinburgh Sch Math Edinburgh Midlothian Scotland
In this work we show that randomized (block) coordinate descent methods can be accelerated by parallelization when applied to the problem of minimizing the sum of a partially separable smooth convex function and a sim... 详细信息
来源: 评论
Recent Advances in Randomized Methods for big data optimization
Recent Advances in Randomized Methods for Big Data Optimizat...
收藏 引用
作者: Jie Liu Lehigh University
学位级别:博士
In this thesis, we discuss and develop randomized algorithms for big data problems. In particular, we study the finite-sum optimization with newly emerged variance- reduction optimization methods (Chapter 2), explore ... 详细信息
来源: 评论