咨询与建议

限定检索结果

文献类型

  • 18 篇 期刊文献
  • 3 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 14 篇 计算机科学与技术...
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 5 篇 理学
    • 4 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 生物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 22 篇 big data optimiz...
  • 3 篇 huge-scale optim...
  • 3 篇 eeg signals
  • 3 篇 iteration comple...
  • 3 篇 partial separabi...
  • 2 篇 multi-objective ...
  • 2 篇 abc algorithm
  • 2 篇 distributed coor...
  • 2 篇 large-scale opti...
  • 2 篇 expected separab...
  • 2 篇 support vector m...
  • 2 篇 empirical risk m...
  • 2 篇 evolutionary mul...
  • 2 篇 signal decomposi...
  • 2 篇 composite object...
  • 2 篇 nsga-iii
  • 2 篇 convex optimizat...
  • 2 篇 communication co...
  • 1 篇 internet of thin...
  • 1 篇 memetic algorith...

机构

  • 2 篇 qingdao univ tec...
  • 2 篇 univ edinburgh s...
  • 2 篇 ocean univ china...
  • 1 篇 zagazig univ fac...
  • 1 篇 guangxi key labo...
  • 1 篇 ondokuz mayis un...
  • 1 篇 univ innsbruck d...
  • 1 篇 nanchang inst te...
  • 1 篇 northeast normal...
  • 1 篇 lehigh universit...
  • 1 篇 univ allahabad d...
  • 1 篇 department of st...
  • 1 篇 department of co...
  • 1 篇 ondokuz mayis un...
  • 1 篇 open text corp m...
  • 1 篇 konya tech univ ...
  • 1 篇 college of artif...
  • 1 篇 selcuk univ kulu...
  • 1 篇 univ missouri de...
  • 1 篇 selcuk univ kony...

作者

  • 4 篇 aslan selcuk
  • 2 篇 richtarik peter
  • 2 篇 yi jiao-hong
  • 2 篇 wang gai-ge
  • 2 篇 dong junyu
  • 2 篇 takac martin
  • 2 篇 alavi amir h.
  • 1 篇 uymaz sait ali
  • 1 篇 ismail hossam
  • 1 篇 liu bo
  • 1 篇 wang wenjun
  • 1 篇 xue yu
  • 1 篇 bougrine saad
  • 1 篇 wang hui
  • 1 篇 cordero jose a.
  • 1 篇 agarwal renu
  • 1 篇 wang liang
  • 1 篇 sarker ruhul
  • 1 篇 sun hui
  • 1 篇 zhao xiande

语言

  • 21 篇 英文
  • 1 篇 土耳其文
检索条件"主题词=Big Data Optimization"
22 条 记 录,以下是1-10 订阅
排序:
Improved Particle Swarm optimization on Based Quantum Behaved Framework for big data optimization
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第3期55卷 2551-2586页
作者: Bas, Emine Selcuk Univ Kulu Vocat Sch TR-42075 Konya Turkey
In recent times, big data has become an essential concern with the rapid increase of digitalization. The problems that find solutions to the problems of finding and evaluating the features of big data are called optim... 详细信息
来源: 评论
Chaotic golden ratio guided local search for big data optimization
收藏 引用
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH 2023年 41卷
作者: Kocer, Havva Gul Turkoglu, Bahaeddin Uymaz, Sait Ali Selcuk Univ Konya Turkiye Nigde Omer Halisdemir Univ Dept Comp Engn Nigde Turkiye Konya Tech Univ Dept Comp Engn Konya Turkiye
Biological systems where order arises from disorder inspires for many metaheuristic optimization techniques. Self-organization and evolution are the common behaviour of chaos and optimization algorithms. Chaos can be ... 详细信息
来源: 评论
A multi-objective African vultures optimization algorithm with binary hierarchical structure and tree topology for big data optimization
收藏 引用
Journal of Advanced Research 2024年
作者: Liu, Bo Zhou, Yongquan Wei, Yuanfei Luo, Qifang College of Artificial Intelligence Guangxi University for Nationalities Nanning 530006 China Xiangsihu College Guangxi University for Nationalities Nanning 530225 China Faculty of Information Science and Technology Universiti Kebangsaan Malaysia Selangor Bangi 43600 Malaysia Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis Nanning 530006 China
Introduction: big data optimization (big-Opt) problems present unique challenges in effectively managing and optimizing the analytical properties inherent in large-scale datasets. The complexity and size of these prob... 详细信息
来源: 评论
A comparative study between artificial bee colony (ABC) algorithm and its variants on big data optimization
收藏 引用
MEMETIC COMPUTING 2020年 第2期12卷 129-150页
作者: Aslan, Selcuk Ondokuz Mayis Univ Samsun Turkey
The big data term and its formal definition have changed the properties of some of the computational problems. One of the problems for which the fundamental properties change with the existence of the big data is the ... 详细信息
来源: 评论
A genetic Artificial Bee Colony algorithm for signal reconstruction based big data optimization
收藏 引用
APPLIED SOFT COMPUTING 2020年 第0期88卷 106053-000页
作者: Aslan, Selcuk Karaboga, Dervis Ondokuz Mayis Univ Dept Comp Engn Samsun Turkey Erciyes Univ Dept Comp Engn Kayseri Turkey King Abdulaziz Univ Fac Comp & Informat Technol Dept Informat Syst Jeddah Saudi Arabia
In recent years, the researchers have witnessed the changes or transformations driven by the existence of the big data on the definitions, complexities and future directions of the real world optimization problems. An... 详细信息
来源: 评论
An optimal fog-cloud offloading framework for big data optimization in heterogeneous IoT networks
收藏 引用
Decision Analytics Journal 2023年 8卷
作者: Bebortta, Sujit Tripathy, Subhranshu Sekhar Modibbo, Umar Muhammad Ali, Irfan Department of Computer Science Ravenshaw University Odisha Cuttack 753003 India School of Computer Engineering KIIT Deemed to be University Campus 15 Rd Chandaka Industrial Estate Odisha Patia Bhubaneswar 751024 India Department of Operations Research Modibbo Adama University Yola P.M.B. 2076 Nigeria Department of Statistics and Operations Research Aligarh Muslim University Aligarh 202 002 India
Executing complex and time-sensitive operations has become difficult due to the increased acceptance of Internet of Things (IoT) devices and IoT-generated big data, which can result in problems with power consumption ... 详细信息
来源: 评论
An Artificial Bee Colony-Guided Approach for Electro-Encephalography Signal Decomposition-Based big data optimization
收藏 引用
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING 2020年 第2期19卷 561-600页
作者: Aslan, Selcuk Ondokuz Mayis Univ Samsun Dept Comp Engn Samsun Turkey
The digital age has added a new term to the literature of information and computer sciences called as the big data in recent years. Because of the individual properties of the newly introduced term, the definitions of... 详细信息
来源: 评论
Hybrid multi-objective evolutionary algorithm based on Search Manager framework for big data optimization problems
收藏 引用
APPLIED SOFT COMPUTING 2020年 87卷 105991-000页
作者: Abdi, Yousef Feizi-Derakhshi, Mohammad-Reza Univ Tabriz Fac Elect & Comp Engn Computerized Intelligence Syst Lab Tabriz Iran
big data optimization (big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizin... 详细信息
来源: 评论
Recent Advances in Randomized Methods for big data optimization
Recent Advances in Randomized Methods for Big Data Optimizat...
收藏 引用
作者: Jie Liu Lehigh University
学位级别:博士
In this thesis, we discuss and develop randomized algorithms for big data problems. In particular, we study the finite-sum optimization with newly emerged variance- reduction optimization methods (Chapter 2), explore ... 详细信息
来源: 评论
An improved NSGA-III algorithm with adaptive mutation operator for big data optimization problems
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2018年 88卷 571-585页
作者: Yi, Jiao-Hong Deb, Suash Dong, Junyu Alavi, Amir H. Wang, Gai-Ge Qingdao Univ Technol Sch Informat & Control Engn Qingdao 266520 Peoples R China Victoria Univ Decis Sci & Modeling Program Melbourne Vic 8001 Australia Ocean Univ China Dept Comp Sci & Technol Qingdao 266100 Peoples R China Univ Missouri Dept Civil & Environm Engn Columbia MO 65211 USA Jiangsu Normal Univ Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China Northeast Normal Univ Inst Algorithm & Big Data Anal Changchun 130117 Jilin Peoples R China Northeast Normal Univ Sch Comp Sci & Informat Technol Changchun 130117 Jilin Peoples R China Jilin Univ Minist Educ Key Lab Symbol Computat & Knowledge Engn Changchun 130012 Jilin Peoples R China
One of the major challenges of solving big data optimization problems via traditional multi-objective evolutionary algorithms (MOEAs) is their high computational costs. This issue has been efficiently tackled by non -... 详细信息
来源: 评论