咨询与建议

限定检索结果

文献类型

  • 18 篇 期刊文献
  • 3 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 14 篇 计算机科学与技术...
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 5 篇 理学
    • 4 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 生物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 22 篇 big data optimiz...
  • 3 篇 huge-scale optim...
  • 3 篇 eeg signals
  • 3 篇 iteration comple...
  • 3 篇 partial separabi...
  • 2 篇 multi-objective ...
  • 2 篇 abc algorithm
  • 2 篇 distributed coor...
  • 2 篇 large-scale opti...
  • 2 篇 expected separab...
  • 2 篇 support vector m...
  • 2 篇 empirical risk m...
  • 2 篇 evolutionary mul...
  • 2 篇 signal decomposi...
  • 2 篇 composite object...
  • 2 篇 nsga-iii
  • 2 篇 convex optimizat...
  • 2 篇 communication co...
  • 1 篇 internet of thin...
  • 1 篇 memetic algorith...

机构

  • 2 篇 qingdao univ tec...
  • 2 篇 univ edinburgh s...
  • 2 篇 ocean univ china...
  • 1 篇 zagazig univ fac...
  • 1 篇 guangxi key labo...
  • 1 篇 ondokuz mayis un...
  • 1 篇 univ innsbruck d...
  • 1 篇 nanchang inst te...
  • 1 篇 northeast normal...
  • 1 篇 lehigh universit...
  • 1 篇 univ allahabad d...
  • 1 篇 department of st...
  • 1 篇 department of co...
  • 1 篇 ondokuz mayis un...
  • 1 篇 open text corp m...
  • 1 篇 konya tech univ ...
  • 1 篇 college of artif...
  • 1 篇 selcuk univ kulu...
  • 1 篇 univ missouri de...
  • 1 篇 selcuk univ kony...

作者

  • 4 篇 aslan selcuk
  • 2 篇 richtarik peter
  • 2 篇 yi jiao-hong
  • 2 篇 wang gai-ge
  • 2 篇 dong junyu
  • 2 篇 takac martin
  • 2 篇 alavi amir h.
  • 1 篇 uymaz sait ali
  • 1 篇 ismail hossam
  • 1 篇 liu bo
  • 1 篇 wang wenjun
  • 1 篇 xue yu
  • 1 篇 bougrine saad
  • 1 篇 wang hui
  • 1 篇 cordero jose a.
  • 1 篇 agarwal renu
  • 1 篇 wang liang
  • 1 篇 sarker ruhul
  • 1 篇 sun hui
  • 1 篇 zhao xiande

语言

  • 21 篇 英文
  • 1 篇 土耳其文
检索条件"主题词=Big Data Optimization"
22 条 记 录,以下是11-20 订阅
排序:
Recent Advances in Randomized Methods for big data optimization
Recent Advances in Randomized Methods for Big Data Optimizat...
收藏 引用
作者: Jie Liu Lehigh University
学位级别:博士
In this thesis, we discuss and develop randomized algorithms for big data problems. In particular, we study the finite-sum optimization with newly emerged variance- reduction optimization methods (Chapter 2), explore ... 详细信息
来源: 评论
Hybrid multi-objective evolutionary algorithm based on Search Manager framework for big data optimization problems
收藏 引用
APPLIED SOFT COMPUTING 2020年 87卷
作者: Abdi, Yousef Feizi-Derakhshi, Mohammad-Reza Univ Tabriz Fac Elect & Comp Engn Computerized Intelligence Syst Lab Tabriz Iran
big data optimization (big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizin... 详细信息
来源: 评论
Chaotic golden ratio guided local search for big data optimization
收藏 引用
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH 2023年 41卷
作者: Kocer, Havva Gul Turkoglu, Bahaeddin Uymaz, Sait Ali Selcuk Univ Konya Turkiye Nigde Omer Halisdemir Univ Dept Comp Engn Nigde Turkiye Konya Tech Univ Dept Comp Engn Konya Turkiye
Biological systems where order arises from disorder inspires for many metaheuristic optimization techniques. Self-organization and evolution are the common behaviour of chaos and optimization algorithms. Chaos can be ... 详细信息
来源: 评论
An optimal fog-cloud offloading framework for big data optimization in heterogeneous IoT networks
收藏 引用
Decision Analytics Journal 2023年 8卷
作者: Bebortta, Sujit Tripathy, Subhranshu Sekhar Modibbo, Umar Muhammad Ali, Irfan Department of Computer Science Ravenshaw University Odisha Cuttack 753003 India School of Computer Engineering KIIT Deemed to be University Campus 15 Rd Chandaka Industrial Estate Odisha Patia Bhubaneswar 751024 India Department of Operations Research Modibbo Adama University Yola P.M.B. 2076 Nigeria Department of Statistics and Operations Research Aligarh Muslim University Aligarh 202 002 India
Executing complex and time-sensitive operations has become difficult due to the increased acceptance of Internet of Things (IoT) devices and IoT-generated big data, which can result in problems with power consumption ... 详细信息
来源: 评论
A multi-objective African vultures optimization algorithm with binary hierarchical structure and tree topology for big data optimization
收藏 引用
Journal of Advanced Research 2024年
作者: Liu, Bo Zhou, Yongquan Wei, Yuanfei Luo, Qifang College of Artificial Intelligence Guangxi University for Nationalities Nanning 530006 China Xiangsihu College Guangxi University for Nationalities Nanning 530225 China Faculty of Information Science and Technology Universiti Kebangsaan Malaysia Selangor Bangi 43600 Malaysia Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis Nanning 530006 China
Introduction: big data optimization (big-Opt) problems present unique challenges in effectively managing and optimizing the analytical properties inherent in large-scale datasets. The complexity and size of these prob... 详细信息
来源: 评论
Behavior of crossover operators in NSGA-III for large-scale optimization problems
收藏 引用
INFORMATION SCIENCES 2020年 509卷 470-487页
作者: Yi, Jiao-Hong Xing, Li-Ning Wang, Gai-Ge Dong, Junyu Vasilakos, Athanasios V. Alavi, Amir H. Wang, Ling Foshan Univ Sch Math & Big Data Foshan 528000 Peoples R China Qingdao Univ Technol Sch Informat & Control Engn Qingdao 266520 Shandong Peoples R China Ocean Univ China Dept Comp Sci & Technol Qingdao 266100 Shandong Peoples R China Lulea Univ Technol Dept Comp Sci Elect & Space Engn SE-93187 Skelleftea Sweden Univ Missouri Dept Civil & Environm Engn Columbia MO 65201 USA Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
Traditional multi-objective optimization evolutionary algorithms (MOEAs) do not usually meet the requirements for online data processing because of their high computational costs. This drawback has resulted in difficu... 详细信息
来源: 评论
big data optimisation and management in supply chain management: a systematic literature review
收藏 引用
ARTIFICIAL INTELLIGENCE REVIEW 2023年 第SUPPL 1期56卷 253-284页
作者: Alsolbi, Idrees Shavaki, Fahimeh Hosseinnia Agarwal, Renu Bharathy, Gnana K. Prakash, Shiv Prasad, Mukesh Umm Al Qura Univ Coll Comp Sci & Informat Syst Dept Informat Syst Mecca Saudi Arabia Univ Technol Sydney Sch Comp Sci Ultimo Australia Univ Technol Sydney Business Sch Ultimo Australia Univ Technol Sydney Fac Engn & Informat Technol Ultimo Australia Univ Allahabad Dept Elect & Commun Prayagraj Uttar Pradesh India
The increasing interest from technology enthusiasts and organisational practitioners in big data applications in the supply chain has encouraged us to review recent research development. This paper proposes a systemat... 详细信息
来源: 评论
Optimizing big data Processing in Cloud by Integrating Versatile Front End to database Systems
Optimizing Big Data Processing in Cloud by Integrating Versa...
收藏 引用
IEEE International Conference on Energy Systems and Applications (ICESA)
作者: Myalapalli, Vamsi Krishna Totakura, Thirumala Padmakumar Open Text Corp Mind Space IT Pk Hyderabad Andhra Pradesh India
The magnitude of data in the concurrent databases is exponentially escalating with respect to time. This advent conveys a challenge in the arena of performance, due to incessant data accumulation, manipulation, analyz... 详细信息
来源: 评论
The application of big data analytics in optimizing logistics: a developmental perspective review
收藏 引用
Journal of data, Information and Management 2019年 第1-2期1卷 33-43页
作者: Yan, Zengwen Ismail, Hossam Chen, Lujie Zhao, Xiande Wang, Liang Xi’an Jiaotong-Liverpool University Suzhou China China Europe International Business School Shanghai China
This paper adopts a developmental perspective to review articles and reports published in the past decade on the application of big data to the optimization of logistics. First, the evolution and features of both logi... 详细信息
来源: 评论
Distributed Block Coordinate Descent for Minimizing Partially Separable Functions  3rd
Distributed Block Coordinate Descent for Minimizing Partiall...
收藏 引用
3rd International Conference on Numerical Analysis and optimization - Theory, Methods, Applications and Technology Transfer ((NAO)
作者: Marecek, Jakub Richtarik, Peter Takac, Martin IBM Res Ireland Dublin Ireland Univ Edinburgh Sch Math Edinburgh Midlothian Scotland Lehigh Univ Dept Ind & Syst Engn Bethlehem PA 18015 USA
A distributed randomized block coordinate descent method for minimizing a convex function of a huge number of variables is proposed. The complexity of the method is analyzed under the assumption that the smooth part o... 详细信息
来源: 评论