咨询与建议

限定检索结果

文献类型

  • 31 篇 期刊文献
  • 19 篇 会议
  • 1 册 图书

馆藏范围

  • 51 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 45 篇 计算机科学与技术...
    • 20 篇 电气工程
    • 10 篇 信息与通信工程
    • 7 篇 软件工程
    • 2 篇 测绘科学与技术
    • 1 篇 机械工程
    • 1 篇 控制科学与工程
    • 1 篇 环境科学与工程(可...
  • 6 篇 理学
    • 2 篇 数学
    • 2 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生物学
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 2 篇 医学
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 51 篇 big data computi...
  • 6 篇 big data
  • 5 篇 cloud computing
  • 3 篇 gpgpu
  • 3 篇 machine learning
  • 3 篇 spark
  • 2 篇 stream computing
  • 2 篇 sublinear-time t...
  • 2 篇 cipher
  • 2 篇 in-memory proces...
  • 2 篇 online schedulin...
  • 2 篇 remote sensing i...
  • 2 篇 mapreduce
  • 2 篇 speech recogniti...
  • 2 篇 multi-datacenter...
  • 2 篇 lightweight
  • 2 篇 distributed comp...
  • 2 篇 reduction techni...
  • 2 篇 mobile computing
  • 2 篇 data-intensive c...

机构

  • 6 篇 chinese acad sci...
  • 5 篇 china univ geosc...
  • 3 篇 univ sydney sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 china univ geosc...
  • 2 篇 china univ geosc...
  • 2 篇 harbin inst tech...
  • 1 篇 kyung hee univ d...
  • 1 篇 china univ min &...
  • 1 篇 zhejiang gongsha...
  • 1 篇 zhejiang sci tec...
  • 1 篇 fac elect engn &...
  • 1 篇 thiagarajar coll...
  • 1 篇 samsung res amer...
  • 1 篇 natl taiwan univ...
  • 1 篇 chunghwa telecom...
  • 1 篇 minzu normal uni...
  • 1 篇 bharathiar univ ...
  • 1 篇 batumi shota rus...
  • 1 篇 chinese acad sci...

作者

  • 5 篇 sun dawei
  • 4 篇 ma yan
  • 4 篇 wang lizhe
  • 3 篇 li jianzhong
  • 3 篇 deng ze
  • 3 篇 miao dongjing
  • 3 篇 gao xiangyu
  • 3 篇 ranjan rajiv
  • 2 篇 gao shang
  • 2 篇 yan hongbin
  • 2 篇 tang hao
  • 2 篇 chen dan
  • 2 篇 buyya rajkumar
  • 2 篇 du bo
  • 2 篇 fu song
  • 2 篇 liu peng
  • 2 篇 zomaya albert
  • 1 篇 robert p. sabell...
  • 1 篇 lu ke
  • 1 篇 lou jian-guang

语言

  • 50 篇 英文
  • 1 篇 其他
检索条件"主题词=Big Data computing"
51 条 记 录,以下是1-10 订阅
排序:
A Comparative Survey of big data computing and HPC: From a Parallel Programming Model to a Cluster Architecture
收藏 引用
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING 2022年 第1期50卷 27-64页
作者: Yin, Fei Shi, Feng Beijing Inst Technol Sch Comp Sci Beijing 100081 Peoples R China
With the rapid growth of artificial intelligence (AI), the Internet of Things (IoT) and big data, emerging applications that cross stacks with different techniques bring new challenges to parallel computing systems. T... 详细信息
来源: 评论
Sublinear-time reductions for big data computing
收藏 引用
THEORETICAL COMPUTER SCIENCE 2022年 932卷 1-12页
作者: Gao, Xiangyu Li, Jianzhong Miao, Dongjing Harbin Inst Technol Dept Comp Sci & Technol Harbin Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Dept Comp Sci & Control Engn Shenzhen Peoples R China
The inefficiency of polynomial-time (PTIME) algorithms in the context of big data indicates a departure from the traditional view on tractability. In recent years, sublineartime algorithms have been regarded as the ne... 详细信息
来源: 评论
Sublinear-Time Reductions for big data computing  15th
Sublinear-Time Reductions for Big Data Computing
收藏 引用
15th Annual International Conference on Combinatorial Optimization and Applications (COCOA)
作者: Gao, Xiangyu Li, Jianzhong Miao, Dongjing Harbin Inst Technol Dept Comp Sci & Technol Harbin Peoples R China Chinese Acad Sci Fac Comp Sci & Control Engn Shenzhen Inst Adv Technol Shenzhen Peoples R China
With the rapid popularization of big data, the dichotomy between tractable and intractable problems in big data computing has been shifted. Sublinear time, rather than polynomial time, has recently been regarded as th... 详细信息
来源: 评论
Recognizing the tractability in big data computing
收藏 引用
THEORETICAL COMPUTER SCIENCE 2020年 838卷 195-207页
作者: Gao, Xiangyu Li, Jianzhong Miao, Dongjing Liu, Xianmin Harbin Inst Technol Harbin 150001 Heilongjiang Peoples R China
Due to the limitation on computational power of existing computers, the polynomial time does not work for identifying the tractable problems in big data computing. This paper adopts the sublinear time as the new stand... 详细信息
来源: 评论
Self-organization Scheme of WSNs with Mobile Sensors and Mobile Multiple Sinks for big data computing
收藏 引用
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS 2020年 第3期14卷 943-961页
作者: Shin, Ahreum Ryoo, Intae Kim, Seokhoon Kyung Hee Univ Dept Comp Sci & Engn Seoul South Korea Soonchunhyang Univ Dept Comp Software Engn Asan South Korea
With the advent of IoT technology and big data computing, the importance of WSNs (Wireless Sensor Networks) has been on the rise. For energy-efficient and collection-efficient delivery of any sensed data, lots of nove... 详细信息
来源: 评论
Experimenting with big data computing for scaling data quality-aware query processing
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 178卷 114858-114858页
作者: Cisneros-Cabrera, Sonia Michailidou, Anna-Valentini Sampaio, Sandra Sampaio, Pedro Gounaris, Anastasios Univ Manchester Dept Comp Sci Manchester Lancs England Aristotle Univ Thessaloniki Dept Informat Thessaloniki Greece Univ Manchester Alliance Manchester Business Sch Manchester Lancs England
Combining query processing techniques with data quality management approaches enables enforcement of quality constraints, such as timeliness, accuracy and completeness, as part of ad-hoc query specification and execut... 详细信息
来源: 评论
Temporal, Functional and Spatial big data computing Framework for Large-Scale Smart Grid
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN computing 2019年 第3期7卷 369-379页
作者: Hou, Weigang Ning, Zhaolong Guo, Lei Zhang, Xu Northeastern Univ Sch Comp Sci & Engn Shenyang 110819 Liaoning Peoples R China Dalian Univ Technol Sch Software Dalian 116024 Peoples R China
With the deployment of monitoring devices, the smart grid is collecting large amounts of energy-related data at an unprecedented speed. The smart grid has become data-driven, which necessitates extracting meaningful d... 详细信息
来源: 评论
Applying SDN based data network on HPC big data computing - Design, Implementation, and Evaluation
Applying SDN based data network on HPC Big Data Computing - ...
收藏 引用
IEEE International Conference on big data (big data)
作者: Chen, Hsing-bung Qiao, Zhi Fu, Song Los Alamos Natl Labs HPC Des Grp Los Alamos NM 87545 USA Univ North Texas CSE Dept Denton TX 76203 USA
Large scale storage data networks are difficult to configure and tricky to maintain [1] [2] [3]. As storage data volumes grow and the pace of change accelerates, it can be a struggle to keep up the integrity of a larg... 详细信息
来源: 评论
bigNoC: Accelerating big data computing with Application-Specific Photonic Network-on-Chip Architectures
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2018年 第11期29卷 2402-2415页
作者: Chittamuru, Sai Vineel Reddy Dang, Dharanidhar Pasricha, Sudeep Mahapatra, Rabi Colorado State Univ Dept Elect & Comp Engn Ft Collins CO 80523 USA Texas A&M Univ Dept Comp Sci & Engn College Stn TX 77843 USA
In the era of big data, high performance data analytics applications are frequently executed on large-scale cluster architectures to accomplish massive data-parallel computations. Often, these applications involve ite... 详细信息
来源: 评论
Performance Analysis of Storm in a Real-World big data Stream computing Environment  13th
Performance Analysis of Storm in a Real-World Big Data Strea...
收藏 引用
13th European-Alliance-for-Innovation (EAI) International Conference on Collaborative computing - Networking, Applications and Worksharing (CollaborateCom)
作者: Yan, Hongbin Sun, Dawei Gao, Shang Zhou, Zhangbing China Univ Geosci Sch Informat Engn Beijing 100083 Peoples R China Deakin Univ Sch Informat Technol Geelong Vic 3216 Australia
As an important distributed real-time computation system, Storm has been widely used in a number of applications such as online machine learning, continuous computation, distributed RPC, and more. Storm is designed to... 详细信息
来源: 评论