咨询与建议

限定检索结果

文献类型

  • 21 篇 会议
  • 16 篇 期刊文献

馆藏范围

  • 37 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 25 篇 计算机科学与技术...
    • 11 篇 电气工程
    • 5 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 软件工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 网络空间安全
  • 5 篇 理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 1 篇 化学
    • 1 篇 地理学
    • 1 篇 海洋科学
    • 1 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 37 篇 big data framewo...
  • 5 篇 big data analyti...
  • 4 篇 big data
  • 3 篇 performance opti...
  • 3 篇 data weighting f...
  • 3 篇 online configura...
  • 3 篇 deep reinforceme...
  • 3 篇 text mining
  • 3 篇 parameter-free t...
  • 2 篇 cassandra
  • 2 篇 apache spark
  • 2 篇 e-learning
  • 2 篇 memory managemen...
  • 2 篇 multiscale featu...
  • 2 篇 decision-making ...
  • 2 篇 semantic classif...
  • 2 篇 augmented learni...
  • 2 篇 mapreduce
  • 2 篇 charging busines...
  • 2 篇 charging pile da...

机构

  • 2 篇 sun yat sen univ...
  • 2 篇 nimt kurukshetra...
  • 2 篇 anhui univ sch c...
  • 2 篇 politecn torino ...
  • 2 篇 shandong univ sc...
  • 1 篇 natl taipei univ...
  • 1 篇 univ technol yat...
  • 1 篇 natl hydraul res...
  • 1 篇 cistel technol i...
  • 1 篇 shenzhen polytec...
  • 1 篇 pukyong natl uni...
  • 1 篇 assam royal glob...
  • 1 篇 int inst informa...
  • 1 篇 manav rachna int...
  • 1 篇 school of comput...
  • 1 篇 univ malaya dept...
  • 1 篇 faculty of compu...
  • 1 篇 appl sci univ co...
  • 1 篇 prince sattam bi...
  • 1 篇 univ carlos iii ...

作者

  • 3 篇 chen pengfei
  • 3 篇 zhang yiwen
  • 3 篇 dou hui
  • 2 篇 di corso evelina
  • 2 篇 zheng zibin
  • 2 篇 cerquitelli tani...
  • 2 篇 singh satendra
  • 2 篇 wang yilun
  • 2 篇 ventura francesc...
  • 2 篇 wu jimmy ming-ta...
  • 2 篇 sreevalsan-nair ...
  • 1 篇 gao xiaoxing
  • 1 篇 chytas achilleas
  • 1 篇 bhardwaj ashu
  • 1 篇 ayub rashid
  • 1 篇 masouros dimosth...
  • 1 篇 zhang lei
  • 1 篇 agrawal rashmi
  • 1 篇 ruiz-mezcua bele...
  • 1 篇 topaloglu zeynep

语言

  • 37 篇 英文
检索条件"主题词=Big Data framework"
37 条 记 录,以下是21-30 订阅
排序:
The Parallel Fuzzy C-Median Clustering Algorithm Using Spark for the big data
收藏 引用
IEEE ACCESS 2024年 12卷 151785-151804页
作者: Alam Mallik, Moksud Fariza Zulkurnain, Nurul Siddiqui, Sumrana Sarkar, Rashel Int Islamic Univ Malaysia Dept Elect & Comp Engn Kuala Lumpur 53100 Malaysia Lords Inst Engn & Technol Dept Comp Sci & Engn Hyderabad 500091 India Deccan Coll Engn & Technol Dept Comp Sci & Engn Hyderabad 500001 India Assam Royal Global Univ Dept Comp Sci & Engn Gauhati 781035 Assam India
big data for sustainable development is a global issue due to the explosive growth of data and according to the forecasting of International data Corporation(IDC), the amount of data in the world will double every 18 ... 详细信息
来源: 评论
DeepCAT: A Cost-Efficient Online Configuration Auto-Tuning Approach for big data frameworks  22
DeepCAT: A Cost-Efficient Online Configuration Auto-Tuning A...
收藏 引用
Proceedings of the 51st International Conference on Parallel Processing
作者: Hui Dou Yilun Wang Yiwen Zhang Pengfei Chen School of Computer Science and Technology Anhui University China School of Computer Science and Engineering Sun Yat-sen University China
To support different application scenarios, big data frameworks usually provide a large number of performance-related configuration parameters. Online auto-tuning these parameters based on deep reinforcement learning ... 详细信息
来源: 评论
Top-k dominating queries on incomplete large dataset
收藏 引用
JOURNAL OF SUPERCOMPUTING 2022年 第3期78卷 3976-3997页
作者: Wu, Jimmy Ming-Tai Wei, Min Wu, Mu-En Tayeb, Shahab Shandong Univ Sci & Technol Coll Comp Sci & Engn Qingdao Peoples R China Natl Taipei Univ Technol Dept Informat & Finance Management Taipei Taiwan Calif State Univ Fresno Dept Elect & Comp Engn Fresno CA 93740 USA
Top-k dominating (TKD) query is one of the methods to find the interesting objects by returning the k objects that dominate other objects in a given dataset. Incomplete datasets have missing values in uncertain dimens... 详细信息
来源: 评论
A Distributed System for Optimal Scale Feature Extraction and Semantic Classification of Large-Scale Airborne LiDAR Point Clouds  17th
A Distributed System for Optimal Scale Feature Extraction an...
收藏 引用
17th International Conference on Distributed Computing and Intelligent Technology
作者: Singh, Satendra Sreevalsan-Nair, Jaya Int Inst Informat Technol Graph Visualizat Comp Lab 26-C Elect City Bangalore 560100 Karnataka India
Airborne LiDAR (Light Detection and Ranging) or aerial laser scanning (ALS) technology can capture large-scale point cloud data, which represents the topography of large regions. The raw point clouds need to be manage... 详细信息
来源: 评论
Towards Developing a Robust Intrusion Detection Model Using Hadoop-Spark and data Augmentation for IoT Networks
收藏 引用
SENSORS 2022年 第20期22卷 7726页
作者: Sanchez, Ricardo Alejandro Manzano Zaman, Marzia Goel, Nishith Naik, Kshirasagar Joshi, Rohit Cistech Ltd 201-203 Colonnade Rd Nepean ON K2E 7K3 Canada Cistel Technol Inc 30 Concourse Gate Nepean ON K2E 7V7 Canada Univ Waterloo Dept Elect & Comp Engn 200 Univ Ave W Waterloo ON N2L 3G1 Canada
In recent years, anomaly detection and machine learning for intrusion detection systems have been used to detect anomalies on Internet of Things networks. These systems rely on machine and deep learning to improve the... 详细信息
来源: 评论
A DISTRIBUTED SYSTEM FOR MULTISCALE FEATURE EXTRACTION AND SEMANTIC CLASSIFICATION OF LARGE-SCALE LIDAR POINT CLOUDS
A DISTRIBUTED SYSTEM FOR MULTISCALE FEATURE EXTRACTION AND S...
收藏 引用
IEEE India Geoscience and Remote Sensing Symposium (InGARSS)
作者: Singh, Satendra Sreevalsan-Nair, Jaya Int Inst Informat Technol Bangalore Graph Visualizat Comp Lab Bangalore 560100 Karnataka India
Managing and processing large-scale point clouds are much needed for the exploration and contextual understanding of the data. Hence, we explore the use of a widely used big data analytics framework, Apache Spark, in ... 详细信息
来源: 评论
Co-design Implications of Cost-effective On-demand Acceleration for Cloud Healthcare Analytics: The AEGLE approach  22
Co-design Implications of Cost-effective On-demand Accelerat...
收藏 引用
22nd Design, Automation and Test in Europe Conference and Exhibition (DATE)
作者: Masouros, Dimosthenis Koliogeorgi, Konstantina Zervakis, Georgios Kosvyra, Alexandra Chytas, Achilleas Xydis, Sotirios Chouvarda, Ioanna Soudris, Dimitrios Natl Tech Univ Athens Microprocessors & Digital Syst Lab ECE Athens Greece Aristotle Univ Thessaloniki Lab Comp Med Informat & Biomed Imaging Technol SM Thessaloniki Greece
Nowadays, big data and machine learning are transforming the way we realize and manage our data. Even though the healthcare domain has recognized big data analytics as a prominent candidate, it has not yet fully grasp... 详细信息
来源: 评论
Tweets Sentiment Analysis for Healthcare on big data Processing and IoT Architecture Using Maximum Entropy Classifier  1st
Tweets Sentiment Analysis for Healthcare on Big Data Process...
收藏 引用
1st International Conference on big data Analysis and Deep Learning (ICBDL)
作者: Htet, Hein Khaing, Soe Soe Myint, Yi Yi Univ Technol Yatanarpon Cyber City Pyin Oo Lwin Myanmar
People are too rare to discuss or talk about their health problems with each other and, it is very poor to notice about their realistic health situation. But nowadays, most of the people friendly used social media and... 详细信息
来源: 评论
High-Utility Itemset Mining in big dataset  6
High-Utility Itemset Mining in Big Dataset
收藏 引用
IEEE International Conference on Consumer Electronics-Taiwan (IEEE ICCE-TW)
作者: Wu, Jimmy Ming-Tai Lin, Jerry Chun-Wei Chen, Chien-Ming Shandong Univ Sci & Technol Coll Comp Sci & Engn Qingdao Peoples R China Western Norway Univ Appl Sci Dept Comp Math & Phys Bergen Norway
High-utility mining (HUIM) is an extended concept from frequent itemset mining (FIM). It emphasizes the more important factors, such as profits or the weight of an itemset in commercial applications. In this paper, we... 详细信息
来源: 评论
Managing food security through food waste and loss: Small data to big data
收藏 引用
COMPUTERS & OPERATIONS RESEARCH 2018年 98卷 367-383页
作者: Irani, Zahir Sharif, Amir M. Lee, Habin Aktas, Emel Topaloglu, Zeynep van't Wout, Tamara Huda, Samsul Univ Bradford Bradford W Yorkshire England Brunel Univ Uxbridge Middx England Cranfield Univ Cranfield Beds England Georgetown Univ Ar Rayyan Qatar Western Sydney Univ Penrith NSW Australia
This paper provides a management perspective of organisational factors that contributes to the reduction of food waste through the application of design science principles to explore causal relationships between food ... 详细信息
来源: 评论