咨询与建议

限定检索结果

文献类型

  • 158 篇 会议
  • 126 篇 期刊文献
  • 3 册 图书
  • 2 篇 学位论文

馆藏范围

  • 289 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 215 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 信息与通信工程
    • 33 篇 软件工程
    • 16 篇 控制科学与工程
    • 13 篇 电子科学与技术(可...
    • 9 篇 仪器科学与技术
    • 9 篇 测绘科学与技术
    • 5 篇 交通运输工程
    • 5 篇 网络空间安全
    • 4 篇 土木工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 3 篇 农业工程
    • 2 篇 机械工程
    • 2 篇 安全科学与工程
  • 28 篇 管理学
    • 24 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 25 篇 理学
    • 8 篇 数学
    • 6 篇 地球物理学
    • 6 篇 生物学
    • 5 篇 化学
    • 4 篇 物理学
  • 5 篇 医学
    • 4 篇 临床医学
  • 3 篇 农学
    • 2 篇 农业资源与环境
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 1 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 289 篇 big data process...
  • 25 篇 cloud computing
  • 21 篇 big data
  • 15 篇 mapreduce
  • 15 篇 machine learning
  • 12 篇 hadoop
  • 11 篇 apache spark
  • 7 篇 data mining
  • 7 篇 distributed syst...
  • 7 篇 edge computing
  • 7 篇 data analysis
  • 6 篇 internet of thin...
  • 6 篇 clustering
  • 6 篇 task scheduling
  • 6 篇 spark
  • 5 篇 big data analyti...
  • 5 篇 performance pred...
  • 4 篇 apache flink
  • 4 篇 optimization
  • 4 篇 data preprocessi...

机构

  • 3 篇 chinese univ hon...
  • 3 篇 univ aizu sch co...
  • 3 篇 natl res nucl un...
  • 3 篇 univ toronto dep...
  • 3 篇 george washingto...
  • 3 篇 chinese univ hon...
  • 2 篇 lphne
  • 2 篇 ras va trapeznik...
  • 2 篇 monash univ fac ...
  • 2 篇 shanghai jiao to...
  • 2 篇 univ sannio dept...
  • 2 篇 china univ petr ...
  • 2 篇 univ toronto dep...
  • 2 篇 beijing inst tec...
  • 2 篇 guangdong univ s...
  • 2 篇 florida int univ...
  • 2 篇 nicta software s...
  • 2 篇 anna univ dept c...
  • 2 篇 xi an jiao tong ...
  • 2 篇 univ new south w...

作者

  • 6 篇 li baochun
  • 5 篇 chen wuhui
  • 5 篇 hu zhiming
  • 4 篇 paik incheon
  • 3 篇 miloslavskaya na...
  • 3 篇 zhu liming
  • 3 篇 amannejad yasama...
  • 3 篇 shah sarah
  • 3 篇 zimeo eugenio
  • 3 篇 kuo yong-hong
  • 3 篇 wang mea
  • 3 篇 wu dongyao
  • 3 篇 tsoi kelvin k. f...
  • 3 篇 krishnamurthy di...
  • 2 篇 lu qinghua
  • 2 篇 zhang lei
  • 2 篇 algemili usamah
  • 2 篇 cai lin
  • 2 篇 phinn s.
  • 2 篇 huang yu

语言

  • 286 篇 英文
  • 3 篇 其他
检索条件"主题词=Big Data processing"
289 条 记 录,以下是61-70 订阅
排序:
Cellular automata-based MapReduce design: Migrating a big data processing model from Industry 4.0 to Industry 5.0
收藏 引用
e-Prime - Advances in Electrical Engineering, Electronics and Energy 2024年 8卷
作者: Mitra, Arnab Department of Information Technology Techno International New Town West Bengal Kolkata 700156 India
A successful deployment of Industry 5.0 is significantly dependent on the synergetic integration of several advanced technologies such as big data processing, Artificial Intelligence (AI) integration, and several effe... 详细信息
来源: 评论
Fault tolerance in big data storage and processing systems: A review on challenges and solutions
收藏 引用
AIN SHAMS ENGINEERING JOURNAL 2022年 第2期13卷 101538-101538页
作者: Saadoon, Muntadher Ab Hamid, Siti Hafizah Sofian, Hazrina Altarturi, Hamza H. M. Azizul, Zati Hakim Nasuha, Nur Univ Malaya Fac Comp Sci & Informat Technol Dept Software Engn Kuala Lumpur 50603 Malaysia
big data systems are sufficiently stable to store and process a massive volume of rapidly changing data. However, big data systems are composed of large-scale hardware resources that make their subspecies easily fail.... 详细信息
来源: 评论
Optimizing Apache Spark MLlib: Predictive Performance of Large-Scale Models for big data Analytics
收藏 引用
ALGORITHMS 2025年 第2期18卷 74-74页
作者: Theodorakopoulos, Leonidas Karras, Aristeidis Krimpas, George A. Univ Patras Dept Management Sci & Technol Patras 26334 Greece Univ Patras Comp Engn & Informat Dept Patras 26504 Greece
In this study, we analyze the performance of the machine learning operators in Apache Spark MLlib for K-Means, Random Forest Regression, and Word2Vec. We used a multi-node Spark cluster along with collected detailed e... 详细信息
来源: 评论
Supporting Efficient Family Joins for big data Tables via Multiple Freedom Family Index
收藏 引用
IEEE ACCESS 2025年 13卷 21707-21722页
作者: Zhu, Qiang Zhu, Chao Univ Michigan Dearborn Dept Comp & Informat Sci Dearborn MI 48128 USA
The Hadoop/MapReduce framework has been widely utilized for processing big data. To overcome the limitations of existing work and meet the growing requirements of querying big data, this paper introduces novel join op... 详细信息
来源: 评论
Text reuse in large historical corpora: insights from the optimization of a data science system
收藏 引用
INTERNATIONAL JOURNAL OF data SCIENCE AND ANALYTICS 2025年 1-13页
作者: Mahadevan, Ananth Mathioudakis, Michael Makela, Eetu Tolonen, Mikko Univ Helsinki Dept Comp Sci Helsinki Finland Univ Helsinki Dept Digital Humanities Helsinki Finland
Text reuse is of fundamental importance in humanities research, as near-verbatim pieces of text in different documents provide invaluable information about the historical spread, evolution of ideas and composition of ... 详细信息
来源: 评论
big data Analytics Using Graph Signal processing
收藏 引用
Computers, Materials & Continua 2023年 第1期74卷 489-502页
作者: Farhan Amin Omar M.Barukab Gyu Sang Choi Department of Information and Communication Engineering Yeungnam UniversityGyeongsan38541Korea Faculty of Computing and Information Technology-Rabigh King Abdulaziz UniversityJeddahSaudi Arabia
The networks are fundamental to our modern world and they appear throughout science and *** to a massive amount of data presents a unique opportunity to the researcher’s *** networks grow in size the complexity incre... 详细信息
来源: 评论
An Efficient and Scalable Framework for processing Remotely Sensed big data in Cloud Computing Environments
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2019年 第7期57卷 4294-4308页
作者: Sun, Jin Zhang, Yi Wu, Zebin Zhu, Yaoqin Yin, Xianliang Ding, Zhongzheng Wei, Zhihui Plaza, Javier Plaza, Antonio Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Nanjing Robot Res Inst Co Ltd Nanjing 211135 Jiangsu Peoples R China Univ Extremadura Hyperspectral Comp Lab Dept Technol Comp & Commun Caceres 10071 Spain
The large amount of data produced by satellites and airborne remote sensing instruments has posed important challenges to efficient and scalable processing of remotely sensed data in the context of various application... 详细信息
来源: 评论
Trustworthy processing of Healthcare big data in Hybrid Clouds
收藏 引用
IEEE CLOUD COMPUTING 2015年 第2期2卷 78-84页
作者: Nepal, Surya Ranjan, Rajiv Choo, Kim-Kwang Raymond CSIRO Canberra ACT Australia Univ S Australia Sch Informat Technol & Math Sci Adelaide SA 5001 Australia
As we delve deeper into the "Digital Age," we're witnessing an explosive growth in the volume, velocity, variety, veracity, and value (the 5Vs) of data produced over the Internet. According to recent Cis... 详细信息
来源: 评论
A Multi-Dimensional Trust Model for processing big data Over Competing Clouds
收藏 引用
IEEE ACCESS 2018年 6卷 39989-40007页
作者: El Kassabi, Hadeel T. Serhani, Mohamed Adel Dssouli, Rachida Benatallah, Boualem Concordia Univ Concordia Inst Informat Syst Engn Montreal PQ H4B 1R6 Canada United Arab Emirates Univ Coll Informat Technol Al Ain 15551 U Arab Emirates Univ New South Wales Sch Comp Sci & Engn Kensington NSW 2052 Australia
Cloud computing has emerged as a powerful paradigm for delivering data-intensive services over the Internet. Cloud computing has enabled the implementation and success of big data, a recent phenomenon handling huge da... 详细信息
来源: 评论
High-efficient energy saving processing of big data of communication under mobile cloud computing
收藏 引用
International Journal of Modeling, Simulation, and Scientific Computing 2019年 第4期10卷 96-106页
作者: Yazhen Liu Pengfei Fan Jiyang Zhu Liping Wen Xiongfei Fan Information Communication Operation and Maintenance Center Information and Communication Branch State Grid Inner Mongolia Eastern Electric Power Co. Ltd.HohhotInner Mongolia Autonomous Region 010020P.R.China Hohhot Power Supply Bureau Inner Mongolia Power(Group)Co.Ltd.HohhotInner Mongolia Autonomous Region 010020P.R.China Training Center Inner Mongolia Power(Group)Co.Ltd.HohhotInner Mongolia Autonomous Region 010020P.R.China
From 21st century,it is hard for traditional storage and algorithm to provide service with high quality because of big data of communication which grows ***,cloud computing technology with relatively low cost of hardw... 详细信息
来源: 评论