datavalidation is about verifying the correctness of data. When organisations update and refine their data transformations to meet evolving requirements, it is imperative to ensure that the new version of a workflow ...
详细信息
datavalidation is about verifying the correctness of data. When organisations update and refine their data transformations to meet evolving requirements, it is imperative to ensure that the new version of a workflow still produces the correct output. We motivate the need for workflows and describe the implementation of a validationtool called Diftong. This tool compares two tabular databases resulting from different versions of a workflow to detect and prevent potential unwanted alterations. Row-based and column-based statistics are used to quantify the results of the database comparison. Diftong was shown to provide accurate results in test scenarios, bringing benefits to companies that need to validate the outputs of their workflows. By automating this process, the risk of human error is also eliminated. Compared to the more labour-intensive manual alternative, it has the added benefit of improved turnaround time for the validation process. Together this allows for a more agile way of updating data transformation workflows.
With the explosion in usage of bigdata, stakes are high for companies to develop workflows that translate the data into business value. Those data transformations are continuously updated and refined in order to meet...
详细信息
With the explosion in usage of bigdata, stakes are high for companies to develop workflows that translate the data into business value. Those data transformations are continuously updated and refined in order to meet the evolving business needs, and it is imperative to ensure that a new version of a workflow still produces the correct output. This study focuses on the validation of bigdata in a real-world scenario, and implements a validationtool that compares two databases that hold the results produced by different versions of a workflow in order to detect and prevent potential unwanted alterations, with row-based and column-based statistics being used to validate the two versions. The tool was shown to provide accurate results in test scenarios, providing leverage to companies that need to validate the outputs of the workflows. In addition, by automating this process, the risk of human error is eliminated, and it has the added benefit of improved speed compared to the more labour-intensive manual alternative. All this allows for a more agile way of performing updates on the data transformation workflows by improving on the turnaround time of the validation process.
暂无评论