咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 4 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 11 篇 计算机科学与技术...
    • 2 篇 控制科学与工程
    • 2 篇 石油与天然气工程
    • 2 篇 软件工程
    • 1 篇 电气工程
  • 10 篇 理学
    • 10 篇 数学
    • 3 篇 统计学(可授理学、...

主题

  • 16 篇 bilinear algorit...
  • 5 篇 matrix multiplic...
  • 3 篇 fast matrix mult...
  • 2 篇 additive complex...
  • 1 篇 tensor decomposi...
  • 1 篇 trilinear aggreg...
  • 1 篇 symmetrian särke...
  • 1 篇 polynomial compo...
  • 1 篇 computational co...
  • 1 篇 tensor contracti...
  • 1 篇 winograd convolu...
  • 1 篇 fast recursive t...
  • 1 篇 polynomial multi...
  • 1 篇 polynomial facto...
  • 1 篇 asymptotic arith...
  • 1 篇 feasible matrix ...
  • 1 篇 samankaltaisuush...
  • 1 篇 analysis of algo...
  • 1 篇 symmetries
  • 1 篇 rectangular matr...

机构

  • 4 篇 hebrew univ jeru...
  • 2 篇 univ illinois de...
  • 1 篇 chechen state un...
  • 1 篇 hebrew univ jeru...
  • 1 篇 saarland univers...
  • 1 篇 cuny herbert h l...
  • 1 篇 swiss fed inst t...
  • 1 篇 department of co...
  • 1 篇 technion israel ...
  • 1 篇 stanford univ de...
  • 1 篇 nanyang technol ...
  • 1 篇 aalto university
  • 1 篇 cuny dept math &...
  • 1 篇 univ calif berke...
  • 1 篇 tel aviv univ te...
  • 1 篇 moscow state uni...
  • 1 篇 cuny grad sch & ...
  • 1 篇 univ calif berke...
  • 1 篇 cuny grad ctr ny...

作者

  • 5 篇 schwartz oded
  • 2 篇 karstadt elaye
  • 2 篇 lysikov v.v.
  • 2 篇 pan vy
  • 2 篇 solomonik edgar
  • 1 篇 ju caleb
  • 1 篇 chokaev b.v.
  • 1 篇 hoefler torsten
  • 1 篇 pan v. ya.
  • 1 篇 karppa matti
  • 1 篇 kaminski michael
  • 1 篇 spiizer yuval
  • 1 篇 xing chaoping
  • 1 篇 hadas tor
  • 1 篇 beniamini gal
  • 1 篇 robert l. prober...
  • 1 篇 nissim roy
  • 1 篇 huang xh
  • 1 篇 trefilov a.p.
  • 1 篇 demmel james

语言

  • 16 篇 英文
检索条件"主题词=Bilinear Algorithms"
16 条 记 录,以下是11-20 订阅
排序:
Fast matrix multiplication and its algebraic neighbourhood
收藏 引用
SBORNIK MATHEMATICS 2017年 第11期208卷 1661-1704页
作者: Pan, V. Ya. CUNY Dept Math & Comp Sci Lehman Coll Bronx NY 10468 USA CUNY Grad Ctr New York NY 10036 USA
Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was n... 详细信息
来源: 评论
On the approximate bilinear complexity of matrix multiplication
收藏 引用
Moscow University Computational Mathematics and Cybernetics 2014年 第4期38卷 177-180页
作者: Trefilov, A.P. Department of Computational Mathematics and Cybernetics Moscow State University Moscow 119991 Russian Federation
It is shown that the approximate bilinear complexity of multiplying matrices of the order 2 × 2 by a matrix of the order 2 × 6 does not exceed 19. An approximate bilinear algorithm of complexity 19 is presen... 详细信息
来源: 评论
An Upper Bound on the Complexity of Multiplication of Polynomials Modulo a Power of an Irreducible Polynomial
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2013年 第10期59卷 6845-6850页
作者: Kaminski, Michael Xing, Chaoping Technion Israel Inst Technol Dept Comp Sci IL-32000 Haifa Israel Nanyang Technol Univ Div Math Sci Singapore 639798 Singapore
Let mu(q2)(n, k)denote the minimum number of multiplications required to compute the coefficients of the product of two degree nk - 1 polynomials modulo the kth power of an irreducible polynomial of degree n over the ... 详细信息
来源: 评论
Fast rectangular matrix multiplication and applications
收藏 引用
JOURNAL OF COMPLEXITY 1998年 第2期14卷 257-299页
作者: Huang, XH Pan, VY CUNY Grad Sch & Univ Ctr Program Math New York NY 10036 USA CUNY Herbert H Lehman Coll Dept Math & Comp Sci Bronx NY 10468 USA
First we study asymptotically fast algorithms for rectangular matrix multiplication. We begin with new algorithms for multiplication of an n x n matrix by an n x n(2) matrix in arithmetic time O(n(omega)), omega = 3.3... 详细信息
来源: 评论
THE LOWER BOUNDS ON THE ADDITIVE COMPLEXITY OF bilinear PROBLEMS IN TERMS OF SOME ALGEBRAIC QUANTITIES
收藏 引用
INFORMATION PROCESSING LETTERS 1981年 第2期13卷 71-72页
作者: PAN, VY STANFORD UNIV DEPT COMP SCISTANFORDCA 94305
Until very recently, the lower bounds on the additive complexity of intensively studied linear and bilinear arithmetic algorithms for arithmetic computational problems have relied on the active operation-basic substit... 详细信息
来源: 评论
On the Additive Complexity of Matrix Multiplication
收藏 引用
SIAM Journal on Computing 1976年 第2期5卷 187-203页
作者: Robert L. Probert
A graph-theoretic model is introduced for bilinear algorithms. This facilitates in particular the investigation of the additive complexity of matrix multiplication. The number of additions/subtractions required for ea... 详细信息
来源: 评论