咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 deep neural netw...
  • 1 篇 dimension reduct...
  • 1 篇 huge-scale optim...
  • 1 篇 gradient-free op...
  • 1 篇 block population...
  • 1 篇 differential evo...
  • 1 篇 hybridization

机构

  • 1 篇 brock univ dept ...
  • 1 篇 brock univ nat i...
  • 1 篇 brock univ bioin...
  • 1 篇 brock univ dept ...

作者

  • 1 篇 khosrowshahli ra...
  • 1 篇 rahnamayan shahr...
  • 1 篇 ombuki-berman be...

语言

  • 1 篇 英文
检索条件"主题词=Block Population-based Algorithms"
1 条 记 录,以下是1-10 订阅
排序:
Massive Dimensions Reduction and Hybridization with Meta-heuristics in Deep Learning
Massive Dimensions Reduction and Hybridization with Meta-heu...
收藏 引用
IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
作者: Khosrowshahli, Rasa Rahnamayan, Shahryar Ombuki-Berman, Beatrice Brock Univ Nat Inspired Computat Intelligence NICI Lab St Catharines ON Canada Brock Univ Bioinspired Computat Intelligence Res Grp BICIG St Catharines ON Canada Brock Univ Dept Comp Sci St Catharines ON Canada Brock Univ Dept Engn St Catharines ON Canada
Deep learning is mainly based on utilizing gradient-based optimization for training Deep Neural Network (DNN) models. Although robust and widely used, gradient-based optimization algorithms are prone to getting stuck ... 详细信息
来源: 评论