咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 31 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 28 篇 工学
    • 27 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 3 篇 电气工程
    • 3 篇 信息与通信工程
    • 1 篇 仪器科学与技术
    • 1 篇 生物工程
  • 10 篇 理学
    • 7 篇 数学
    • 2 篇 生物学
    • 2 篇 统计学(可授理学、...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 31 篇 boolean matrix f...
  • 7 篇 formal concept a...
  • 3 篇 algorithms
  • 2 篇 statistics
  • 2 篇 nonnegative matr...
  • 2 篇 data reduction
  • 2 篇 information gain
  • 2 篇 model order sele...
  • 2 篇 boolean factor a...
  • 2 篇 minimum descript...
  • 2 篇 bars problem
  • 2 篇 formal concept
  • 2 篇 parallel algorit...
  • 1 篇 dina model
  • 1 篇 cognitive diagno...
  • 1 篇 quality of facto...
  • 1 篇 associative memo...
  • 1 篇 rmp
  • 1 篇 clip
  • 1 篇 noise reduction

机构

  • 9 篇 palacky univ olo...
  • 2 篇 natl res univ hi...
  • 2 篇 max planck inst ...
  • 2 篇 palacky univ dep...
  • 1 篇 univ trento dept...
  • 1 篇 univ exeter dept...
  • 1 篇 los alamos natl ...
  • 1 篇 los alamos natl ...
  • 1 篇 tu dortmund univ...
  • 1 篇 purdue univ stat...
  • 1 篇 acad sci czech r...
  • 1 篇 tech univ ostrav...
  • 1 篇 russian acad sci...
  • 1 篇 univ lorraine lo...
  • 1 篇 zhengzhou univ l...
  • 1 篇 palacky univ olo...
  • 1 篇 univ saarland d-...
  • 1 篇 macau univ sci &...
  • 1 篇 ras inst higher ...
  • 1 篇 palacky univ olo...

作者

  • 14 篇 trnecka martin
  • 4 篇 belohlavek radim
  • 3 篇 miettinen pauli
  • 3 篇 trneckova market...
  • 2 篇 desantis derek
  • 2 篇 truong duc p.
  • 2 篇 makhalova tatian...
  • 2 篇 husek dusan
  • 2 篇 morik katharina
  • 2 篇 hess sibylle
  • 2 篇 krajca petr
  • 2 篇 vyjidacek roman
  • 2 篇 alexandrov boian
  • 2 篇 skau erik
  • 1 篇 zhang chengling
  • 1 篇 parfenov denis
  • 1 篇 cao sha
  • 1 篇 wang xiao
  • 1 篇 zhao yue
  • 1 篇 frolov alexander...

语言

  • 30 篇 英文
  • 1 篇 其他
检索条件"主题词=Boolean Matrix Factorization"
31 条 记 录,以下是1-10 订阅
排序:
Revisiting data reduction for boolean matrix factorization algorithms based on formal concept analysis
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2025年 第1期16卷 419-447页
作者: Yang, Lanzhen Tsang, Eric C. C. Mao, Hua Zhang, Chengling Wu, Jiaming Macau Univ Sci & Technol Sch Comp Sci & Engn Taipa Macao Peoples R China Hebei Univ Coll Math & Informat Sci Baoding 071002 Peoples R China
boolean matrix factorization (BMF) helps unveil hidden patterns in boolean datasets and is a powerful tool in machine learning. However, when dealing with large datasets, reducing data size becomes crucial for BMF alg... 详细信息
来源: 评论
boolean matrix factorization based on collaborative neurodynamic optimization with Boltzmann machines
收藏 引用
NEURAL NETWORKS 2022年 153卷 142-151页
作者: Li, Xinqi Wang, Jun Kwong, Sam Univ Exeter Dept Comp Sci Exeter England City Univ Hong Kong Dept Comp Sci Kowloon Hong Kong Peoples R China City Univ Hong Kong Sch Data Sci Kowloon Hong Kong Peoples R China
This paper presents a collaborative neurodynamic approach to boolean matrix factorization. Based on a binary optimization formulation to minimize the Hamming distance between a given data matrix and its low-rank recon... 详细信息
来源: 评论
boolean matrix factorization via Nonnegative Auxiliary Optimization
收藏 引用
IEEE ACCESS 2021年 9卷 117169-117177页
作者: Truong, Duc P. Skau, Erik Desantis, Derek Alexandrov, Boian Los Alamos Natl Lab Comp Computat & Stat Div Los Alamos NM 87545 USA Los Alamos Natl Lab Theoret Div Los Alamos NM 87545 USA Los Alamos Natl Lab Ctr Nonlinear Studies Los Alamos NM 87545 USA
A novel approach to boolean matrix factorization (BMF) is presented. Instead of solving the BMF problem directly, this approach solves a nonnegative optimization problem with an additional constraint over an auxiliary... 详细信息
来源: 评论
From-below boolean matrix factorization algorithm based on MDL
收藏 引用
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION 2021年 第1期15卷 37-56页
作者: Makhalova, Tatiana Trnecka, Martin Natl Res Univ Higher Sch Econ Moscow Russia Univ Lorraine INRIA CNRS LORIA Vanduoevre Les Nancy France Palacky Univ Olomouc Dept Comp Sci Olomouc Czech Republic
During the past few years boolean matrix factorization (BMF) has become an important direction in data analysis. The minimum description length principle (MDL) was successfully adapted in BMF for the model order selec... 详细信息
来源: 评论
Handling noise in boolean matrix factorization
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2018年 96卷 78-94页
作者: Belohlavek, Radim Trnecka, Martin Palacky Univ Olomouc Dept Comp Sci Olomouc Czech Republic
One of the challenges presented by boolean matrix factorization consists in what became known as the ability to deal with noise in data. In this paper, we critically examine existing considerations regarding noise, re... 详细信息
来源: 评论
MDL4BMF: Minimum Description Length for boolean matrix factorization
收藏 引用
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 2014年 第4期8卷 1–31页
作者: Miettinen, Pauli Vreeken, Jilles Max Planck Inst Informat D-66123 Saarbrucken Germany Univ Saarland D-66123 Saarbrucken Germany Univ Antwerp Dept Wiskunde & Informat B-2020 Antwerp Belgium
matrix factorizations-where a given data matrix is approximated by a product of two or more factor matrices-are powerful data mining tools. Among other tasks, matrix factorizations are often used to separate global st... 详细信息
来源: 评论
Data Reduction for boolean matrix factorization Algorithms Based on Formal Concept Analysis
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2018年 158卷 75-80页
作者: Trnecka, Martin Trneckova, Marketa Palacky Univ Dept Comp Sci Olomouc Czech Republic
Data size reduction is an important step in many data mining techniques. We present a novel approach based on formal concept analysis to data reduction tailored for boolean matrix factorization methods. A general aim ... 详细信息
来源: 评论
A new algorithm for boolean matrix factorization which admits overcovering
收藏 引用
DISCRETE APPLIED MATHEMATICS 2018年 249卷 36-52页
作者: Belohlavek, Radim Trnecka, Martin Palacky Univ Dept Comp Sci Olomouc Czech Republic
We present a new algorithm for general boolean matrix factorization. The algorithm is based on two key ideas. First, it utilizes formal concepts of the factorized matrix as crucial components of constructed factors. S... 详细信息
来源: 评论
Parallel exploration of partial solutions in boolean matrix factorization
收藏 引用
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 2019年 123卷 180-191页
作者: Outrata, Jan Trnecka, Martin Palacky Univ Olomouc Dept Comp Sci 17 Listopadu 12 CZ-77146 Olomouc Czech Republic
boolean matrix factorization (BMF) is a well established method for preprocessing and analysis of data. There is a number of algorithms for BMF, but none of them uses benefits of parallelization. This is mainly due to... 详细信息
来源: 评论
Data-driven Q-matrix learning based on boolean matrix factorization in cognitive diagnostic assessment
收藏 引用
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY 2022年 第3期75卷 638-667页
作者: Xiong, Jianhua Luo, Zhaosheng Luo, Guanzhong Yu, Xiaofeng Jiangxi Normal Univ Sch Psychol 99 Ziyang Ave Nanchang 330022 Jiangxi Peoples R China Jiangxi Normal Univ Sch Comp & Informat Engn Nanchang Jiangxi Peoples R China
Attributes and the Q-matrix are the central components for cognitive diagnostic assessment, and are usually defined by domain experts. However, it is challenging and time consuming for experts to specify the attribute... 详细信息
来源: 评论