咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 80 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 38 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 6 篇 控制科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 土木工程
    • 4 篇 信息与通信工程
    • 4 篇 水利工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 软件工程
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 网络空间安全
  • 32 篇 理学
    • 12 篇 生物学
    • 9 篇 数学
    • 6 篇 统计学(可授理学、...
    • 5 篇 化学
    • 4 篇 物理学
  • 17 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
    • 2 篇 图书情报与档案管...
  • 11 篇 医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 4 篇 经济学
    • 4 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 80 篇 boosting algorit...
  • 26 篇 machine learning
  • 5 篇 xgboost
  • 4 篇 ensemble learnin...
  • 3 篇 support vector m...
  • 3 篇 gradient boostin...
  • 3 篇 adaboost
  • 3 篇 artificial intel...
  • 3 篇 artificial neura...
  • 2 篇 performance
  • 2 篇 deep learning
  • 2 篇 catboost
  • 2 篇 acquisition of d...
  • 2 篇 lightgbm
  • 2 篇 research
  • 2 篇 data mining
  • 2 篇 feature extracti...
  • 2 篇 empirical resear...
  • 2 篇 performance eval...
  • 2 篇 clustering algor...

机构

  • 2 篇 univ penn wharto...
  • 2 篇 vellore inst tec...
  • 2 篇 at&t labs res sh...
  • 1 篇 missouri state u...
  • 1 篇 univ georgia dep...
  • 1 篇 indian inst info...
  • 1 篇 univ nottingham ...
  • 1 篇 carleton univ de...
  • 1 篇 tsinghua univ in...
  • 1 篇 vellore inst tec...
  • 1 篇 int coll engn & ...
  • 1 篇 mirpur univ sci ...
  • 1 篇 dalarna univ dep...
  • 1 篇 univ coll dublin...
  • 1 篇 univ aveiro tema...
  • 1 篇 univ tabriz fac ...
  • 1 篇 tianjin univ tra...
  • 1 篇 cv raman global ...
  • 1 篇 indian inst sci ...
  • 1 篇 uppsala univ dep...

作者

  • 2 篇 kothandaraman mo...
  • 2 篇 rajasekaran uma
  • 2 篇 schapire re
  • 2 篇 mease david
  • 2 篇 tariq aiman
  • 2 篇 singer y
  • 2 篇 hepp tobias
  • 2 篇 mayr andreas
  • 2 篇 deliktas babur
  • 2 篇 sánchez l
  • 1 篇 blumenstein mich...
  • 1 篇 pan chuandi
  • 1 篇 banujan kuhanesw...
  • 1 篇 kumara b. t. g. ...
  • 1 篇 patricio sonia g...
  • 1 篇 degtyarev vitali...
  • 1 篇 dai xingliang
  • 1 篇 chandraker abhin...
  • 1 篇 chauhan ankur
  • 1 篇 sim doreen y. y.

语言

  • 71 篇 英文
  • 7 篇 其他
检索条件"主题词=Boosting Algorithms"
80 条 记 录,以下是21-30 订阅
排序:
Landslide susceptibility mapping(LSM)based on different boosting and hyperparameter optimization algorithms:A case of Wanzhou District,China
收藏 引用
Journal of Rock Mechanics and Geotechnical Engineering 2024年 第8期16卷 3221-3232页
作者: Deliang Sun Jing Wang Haijia Wen YueKai Ding Changlin Mi Key Laboratory of GIS Application Research Chongqing Normal UniversityChongqing 401331China Key Laboratory of New Technology for Construction of Cities in Mountain Area Ministry of EducationChongqing UniversityChongqing 400045China National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas Chongqing UniversityChongqing 400045China School of Civil Engineering Chongqing UniversityChongqing 400045China Natural Resources Development Service Center of Linyi Linyi 276000China
boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)***,these algorithms possess distinct computational strategies and hyperparameters,making it challenging to prop... 详细信息
来源: 评论
Vibration analysis of embedded porous nanobeams under thermal effects using boosting machine learning algorithms and semi-analytical approach
收藏 引用
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 2024年 第29期31卷 12320-12343页
作者: Tariq, Aiman Uzun, Busra Deliktas, Babur Yayli, Mustafa Ozgur Bursa Uludag Univ Engn Fac Dept Civil Engn Bursa Turkiye
This study presents a thermal vibration analysis of functionally graded porous nanobeams using boosting machine learning models and a semi-analytical approach. Nonlocal strain gradient theory is employed to explore vi... 详细信息
来源: 评论
boosting machine learning algorithms for predicting the macroscopic material behavior of continuous fiber reinforced composite
收藏 引用
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES 2024年
作者: Tariq, Aiman Polat, Ayse Deliktas, Babur Bursa Uludag Univ Engn Fac Dept Civil Engn Gorukle CampusNilufer TR-16059 Bursa Turkiye
Macroscopic mechanical properties of fibrous materials are often characterized by modeling their microscale behavior using micromechanical techniques. This process typically involves using a Representative Volume Elem... 详细信息
来源: 评论
Performance evaluation of boosting machine learning algorithms for lithofacies classification in heterogeneous carbonate reservoirs
收藏 引用
MARINE AND PETROLEUM GEOLOGY 2022年 145卷
作者: Al-Mudhafar, Watheq J. Abbas, Mohammed A. Wood, David A. Basrah Oil Co Basrah Iraq Basrah Oil Co Petrophys Basrah Iraq DWA Energy Ltd Lincoln England
Lithofacies classification from well logs recorded through heterogeneous carbonate reservoirs helps to improve reservoir discrimination with respect to fluid flow and storage capabilities. A novel technique is develop... 详细信息
来源: 评论
Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques
收藏 引用
COMPUTERS & STRUCTURES 2024年 305卷
作者: Zareian, Farzaneh Banazadeh, Mehdi Zareian, Mohammad Sajjad Amirkabir Univ Technol Dept Civil & Environm Engn Tehran Iran Shahab Danesh Univ Dept Civil Engn Qom Iran
The main objective of this paper is to develop machine learning (ML) models for predicting the seismic responses of steel moment frames. For this purpose, four boosting ML techniques-gradient boosting, XGBoost, LightG... 详细信息
来源: 评论
BoosTexter: A boosting-based system for text categorization
收藏 引用
MACHINE LEARNING 2000年 第2-3期39卷 135-168页
作者: Schapire, RE Singer, Y AT&T Labs Res Shannon Lab Florham Pk NJ 07932 USA Hebrew Univ Jerusalem Sch Comp Sci & Engn IL-91904 Jerusalem Israel
This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an... 详细信息
来源: 评论
boosting the visibility of services in microservice architecture
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2024年 第3期27卷 3099-3111页
作者: Tokmak, Ahmet Vedat Akbulut, Akhan Catal, Cagatay Istanbul Kultur Univ Dept Comp Engn TR-34536 Istanbul Turkiye Qatar Univ Dept Comp Sci & Engn Doha 2713 Qatar
Monolithic software architectures are no longer sufficient for the highly complex software-intensive systems, which modern society depends on. Service Oriented Architecture (SOA) surpassed monolithic architecture due ... 详细信息
来源: 评论
Evidence contrary to the statistical view of boosting
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2008年 第2期9卷 131-156页
作者: Mease, David Wyner, Abraham San Jose State Univ Coll Business Dept Marketing & Decis Sci San Jose CA 95192 USA Univ Penn Wharton Sch Dept Stat Philadelphia PA 19104 USA
The statistical perspective on boosting algorithms focuses on optimization, drawing parallels with maximum likelihood estimation for logistic regression. In this paper we present empirical evidence that raises questio... 详细信息
来源: 评论
boosting methods for multi-class imbalanced data classification: an experimental review
收藏 引用
JOURNAL OF BIG DATA 2020年 第1期7卷 1-47页
作者: Tanha, Jafar Abdi, Yousef Samadi, Negin Razzaghi, Nazila Asadpour, Mohammad Univ Tabriz Fac Elect & Comp Engn POB 51666-16471 Tabriz Iran
Since canonical machine learning algorithms assume that the dataset has equal number of samples in each class, binary classification became a very challenging task to discriminate the minority class samples efficientl... 详细信息
来源: 评论
An iterative boosting-based ensemble for streaming data classification
收藏 引用
INFORMATION FUSION 2019年 45卷 66-78页
作者: Bertini Junior, Joao Roberto Nicoletti, Maria do Carmo Univ Estadual Campinas Sch Technol Rua Paschoal Marmo 1888 Limeira Brazil FACCAMP Campo Limpo Paulista SP Brazil Univ Fed Sao Carlos Comp Sci Dept Sao Carlos SP Brazil
Among the many issues related to data stream applications, those involved in predictive tasks such as classification and regression, play a significant role in Machine Learning (ML). The so-called ensemble-based appro... 详细信息
来源: 评论