咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 80 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 38 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 6 篇 控制科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 土木工程
    • 4 篇 信息与通信工程
    • 4 篇 水利工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 软件工程
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 网络空间安全
  • 32 篇 理学
    • 12 篇 生物学
    • 9 篇 数学
    • 6 篇 统计学(可授理学、...
    • 5 篇 化学
    • 4 篇 物理学
  • 17 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
    • 2 篇 图书情报与档案管...
  • 11 篇 医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 4 篇 经济学
    • 4 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 80 篇 boosting algorit...
  • 26 篇 machine learning
  • 5 篇 xgboost
  • 4 篇 ensemble learnin...
  • 3 篇 support vector m...
  • 3 篇 gradient boostin...
  • 3 篇 adaboost
  • 3 篇 artificial intel...
  • 3 篇 artificial neura...
  • 2 篇 performance
  • 2 篇 deep learning
  • 2 篇 catboost
  • 2 篇 acquisition of d...
  • 2 篇 lightgbm
  • 2 篇 research
  • 2 篇 data mining
  • 2 篇 feature extracti...
  • 2 篇 empirical resear...
  • 2 篇 performance eval...
  • 2 篇 clustering algor...

机构

  • 2 篇 univ penn wharto...
  • 2 篇 vellore inst tec...
  • 2 篇 at&t labs res sh...
  • 1 篇 missouri state u...
  • 1 篇 univ georgia dep...
  • 1 篇 indian inst info...
  • 1 篇 univ nottingham ...
  • 1 篇 carleton univ de...
  • 1 篇 tsinghua univ in...
  • 1 篇 vellore inst tec...
  • 1 篇 int coll engn & ...
  • 1 篇 mirpur univ sci ...
  • 1 篇 dalarna univ dep...
  • 1 篇 univ coll dublin...
  • 1 篇 univ aveiro tema...
  • 1 篇 univ tabriz fac ...
  • 1 篇 tianjin univ tra...
  • 1 篇 cv raman global ...
  • 1 篇 indian inst sci ...
  • 1 篇 uppsala univ dep...

作者

  • 2 篇 kothandaraman mo...
  • 2 篇 rajasekaran uma
  • 2 篇 schapire re
  • 2 篇 mease david
  • 2 篇 tariq aiman
  • 2 篇 singer y
  • 2 篇 hepp tobias
  • 2 篇 mayr andreas
  • 2 篇 deliktas babur
  • 2 篇 sánchez l
  • 1 篇 blumenstein mich...
  • 1 篇 pan chuandi
  • 1 篇 banujan kuhanesw...
  • 1 篇 kumara b. t. g. ...
  • 1 篇 patricio sonia g...
  • 1 篇 degtyarev vitali...
  • 1 篇 dai xingliang
  • 1 篇 chandraker abhin...
  • 1 篇 chauhan ankur
  • 1 篇 sim doreen y. y.

语言

  • 71 篇 英文
  • 7 篇 其他
检索条件"主题词=Boosting Algorithms"
80 条 记 录,以下是71-80 订阅
排序:
Crystal structural prediction of perovskite materials using machine learning: A comparative study
收藏 引用
SOLID STATE COMMUNICATIONS 2023年 第1期361卷
作者: Priyadarshini, Rojalina Joardar, Hillol Bisoy, Sukant Kishoro Badapanda, Tanmaya CV Raman Global Univ Dept Comp Sc & Engg Bhubaneswar Odisha India CV Raman Global Univ Dept Mech Engn Bhubaneswar Odisha India CV Raman Global Univ Dept Phys Bhubaneswar Odisha India
In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven different ML algorithms are applied to the experimentally ... 详细信息
来源: 评论
Embedding Undersampling Rotation Forest for Imbalanced Problem
收藏 引用
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018年 第1期2018卷 1-15页
作者: Guo, Huaping Diao, Xiaoyu Liu, Hongbing Xinyang Normal Univ Sch Comp & Informat Technol Xinyang 464000 Henan Peoples R China
Rotation Forest is an ensemble learning approach achieving better performance comparing to Bagging and boosting through building accurate and diverse classifiers using rotated feature space. However, like other conven... 详细信息
来源: 评论
A Survey and Study of Signal and Data-Driven Approaches for Pipeline Leak Detection and Localization
收藏 引用
JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE 2024年 第2期15卷
作者: Rajasekaran, Uma Kothandaraman, Mohanaprasad Vellore Inst Technol VIT Univ Sch Elect Engn SENSE Chennai 600127 Tamil Nadu India
A pipeline is critical in conveying water, oil, gas, petrochemicals, and slurry. As the pipeline ages and corrodes, it becomes susceptible to deterioration, resulting in wastage and hazardous damages depending on the ... 详细信息
来源: 评论
Comparative Analysis of Machine Learning and Deep Learning Based Water Pipeline Leak Detection Using EDFL Sensor
收藏 引用
JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE 2023年 第4期14卷 04023026-04023026页
作者: Rajasekaran, Uma Kothandaraman, Mohanaprasad Vellore Inst Technol VIT Univ Sch Elect Engn SENSE Chennai 600127 Tamil Nadu India
A pipeline is the most efficient way to transport water from one place to another. Due to aging, corrosion, and external factors, the pipeline is prone to damage, which causes leaks. Many machine learning (ML) and dee... 详细信息
来源: 评论
Customer Transaction Prediction System
收藏 引用
Procedia Computer Science 2020年 168卷 49-56页
作者: Devendra Prakash Jaiswal Srishti Kumar Partha Mukherjee Pennsylvania State University 30 E. Swedesford Road Great Valley Malvern 19355 USA
In this data-driven world, every innovation is targeted towards the attainment of a better future where we can sustain ourselves in the easiest and most comfortable of ways. The desire of this utopia has induced numer... 详细信息
来源: 评论
Smart Robust Feature Selection (SoFt) for imbalanced and heterogeneous data
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2022年 第0期236卷 107197-107197页
作者: Kasim, Henry King, Stephen Lee, Gary Kee Khoon Sirigina, Rajendra Prasad How, Shannon Shi Qi Hung, Terence Gih Guang Cent Technol & Strategy Grp Future Intelligence Technol Rolls Royce Singapore Singapore Nanyang Technol Univ Rolls RoyceNTU Corp Lab Singapore Singapore Cranfield Univ Transport & Mfg IVHM Ctr Sch Aerosp Bedford MK43 0AL England
Designing a smart and robust predictive model that can deal with imbalanced data and a heterogeneous set of features is paramount to its widespread adoption by practitioners. By smart, we mean the model is either para... 详细信息
来源: 评论
A Machine Learning-Based Framework for Water Quality Index Estimation in the Southern Bug River
收藏 引用
WATER 2023年 第20期15卷 3543页
作者: Masood, Adil Niazkar, Majid Zakwan, Mohammad Piraei, Reza Jamia Millia Islamia Dept Civil Engn New Delhi 110025 India Free Univ Bozen Bolzano Fac Engn Piazza Univ 5 I-39100 Bolzano Bolzano Italy Maulana Azad Natl Urdu Univ Sch Technol Hyderabad 500032 Telangana India Shiraz Univ Dept Civil Engn Shiraz *** Iran
River water quality is of utmost importance because the river is not only one of the key water resources but also a natural habitat serving its surrounding environment. In a bid to address whether it has a qualified q... 详细信息
来源: 评论
People and Mobile Robot Classification Through Spatio-Temporal Analysis of Optical Flow
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2015年 第6期29卷 1550021-1550021页
作者: Moreno, Plinio Figueira, Dario Bernardino, Alexandre Santos-Victor, Jose Univ Lisbon Inst Super Tecn LARSyS Inst Syst & Robot ISR IST P-1699 Lisbon Portugal
The goal of this work is to distinguish between humans and robots in a mixed human-robot environment. We analyze the spatio-temporal patterns of optical flow-based features along several frames. We consider the Histog... 详细信息
来源: 评论
SVM based Ensemble Learning for Spatial and Temporal Air Pollution Analysis
SVM based Ensemble Learning for Spatial and Temporal Air Pol...
收藏 引用
2014 International Conference on Information Technology and Management Engineering(ITME 2014)
作者: Shahid ALI Anthony LAI Department of Computing Unitec Department of Electrotechnology Unitec
The paper aims to propose spatial and temporal air pollution data analysis by using Support Vector Machine(SVM) ensemble method along with single SVM, Bagging and Adaboost M1 algorithms to identify three objectives of... 详细信息
来源: 评论
International agricultural trade forecasting using machine learning
收藏 引用
DATA & POLICY 2021年 第1期3卷 e1-e1页
作者: Gopinath, Munisamy Batarseh, Feras A. Beckman, Jayson Kulkarni, Ajay Jeong, Sei Univ Georgia Dept Agr & Appl Econ Athens GA 30602 USA Virginia Polytech Inst & State Univ Bradley Dept Elect & Comp Engn Virginia Tech Arlington VA 24061 USA USDA Econ Res Serv Washington DC USA George Mason Univ Coll Sci Fairfax VA 22030 USA
Focusing on seven major agricultural commodities with a long history of trade, this study employs data-driven analytics to decipher patterns of trade, namely using supervised machine learning (ML), as well as neural n... 详细信息
来源: 评论