In this thesis, we consider variational inequalities in the form of partial differential equations with complementarity constraints. We construct a posteriori error estimates for discretizations using the finite eleme...
详细信息
In this thesis, we consider variational inequalities in the form of partial differential equations with complementarity constraints. We construct a posteriori error estimates for discretizations using the finite element method and the finite volume method, for inexact linearizations employing any semismooth Newton solver and any iterative linear algebraic solver. First, we consider the model problem of contact between two membranes, next we consider its extension into a parabolic variational inequality, and to finish we treat a two-phase compositional flow with phase transition as an industrial application. In the first chapter, we consider the stationnary problem of contact between two membranes. This problem belongs to the wide range of variational inequalities of the first kind. Our discretization is based on the finite element method with polynomials of order p ≥ 1, and we propose two discrete equivalent formulations: the first one as a variational inequality, and the second one as a saddle-point-type problem. We employ the Clarke differential so as to treat the nondifferentiable nonlinearities. It enables us to use semismooth Newton algorithms. Next, any iterative linear algebraic solver is used for the linear system stemming from the discretization. Employing the methodology of equilibrated flux reconstructions in the space H(div, Ω), we get an upper bound on the total error in the energy norm H 1 0 (Ω). This bound is fully computable at each semismooth Newton step and at each linear algebraic step. Our estimation distinguishes in particular the three components of the error, namely the discretization error (finite elements), the linearization error (semismooth Newton method), and the algebraic error (GMRES algorithm). We then formulate adaptive stopping criteria for our solvers to ulti- mately reduce the number of iterations. We also prove, in the inexact semismooth context, the local efficiency property of our estimators, up to a contact term that appears ne
暂无评论