Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on *** vulnerability detection of large-scale smart contracts is critical,as attacks on smart cont...
详细信息
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on *** vulnerability detection of large-scale smart contracts is critical,as attacks on smart contracts often cause huge economic *** it is difficult to repair and update smart contracts,it is necessary to find the vulnerabilities before they are ***,code analysis,which requires traversal paths,and learning methods,which require many features to be trained,are too time-consuming to detect large-scale on-chain ***-based methods will obtain detection models from a feature space compared to code analysis methods such as symbol *** the existing features lack the interpretability of the detection results and training model,even worse,the large-scale feature space also affects the efficiency of *** paper focuses on improving the detection efficiency by reducing the dimension of the features,combined with expert *** this paper,a feature extraction model Block-gram is proposed to form low-dimensional knowledge-based features from ***,the metadata is separated and the runtime code is converted into a sequence of opcodes,which are divided into segments based on some instructions(jumps,etc.).Then,scalable Block-gram features,including 4-dimensional block features and 8-dimensional attribute features,are mined for the learning-based model ***,feature contributions are calculated from SHAP values to measure the relationship between our features and the results of the detection *** addition,six types of vulnerability labels are made on a dataset containing 33,885 contracts,and these knowledge-based features are evaluated using seven state-of-the-art learning algorithms,which show that the average detection latency speeds up 25×to 650×,compared with the features extracted by N-gram,and also can enhance the interpretability of the detection model.
暂无评论