咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 object detection
  • 1 篇 c2f-dcnv2-mpca o...
  • 1 篇 transformers
  • 1 篇 giou loss functi...
  • 1 篇 computational mo...
  • 1 篇 detection algori...
  • 1 篇 afgcattention mo...
  • 1 篇 yolov8
  • 1 篇 feature extracti...
  • 1 篇 remote sensing
  • 1 篇 carafe upsamplin...
  • 1 篇 remote sensing i...
  • 1 篇 accuracy
  • 1 篇 computer vision
  • 1 篇 convolutional ne...
  • 1 篇 attention mechan...

机构

  • 1 篇 china geol surve...
  • 1 篇 univ sanya sch i...
  • 1 篇 hainan trop ocea...

作者

  • 1 篇 chen ming
  • 1 篇 chen cong
  • 1 篇 zhang yunfei

语言

  • 1 篇 英文
检索条件"主题词=C2f-DCNv2-MPCA optimization module"
1 条 记 录,以下是1-10 订阅
排序:
Remote Sensing Image Detection Method combining Dynamic convolution and Attention Mechanism
收藏 引用
IEEE AccESS 2025年 13卷 47271-47290页
作者: Zhang, Yunfei chen, Ming chen, cong China Geol Survey Urumqi Nat Resources Comprehens Survey Ctr Urumqi 830057 Peoples R China Univ Sanya Sch Informat & Intelligent Engn Sanya 572022 Peoples R China Hainan Trop Ocean Univ Sch Marine Informat Engn Sanya 572022 Peoples R China
Small object detection in remote sensing images is challenging. Traditional cNN downsampling often leads to the loss of small object details and missed detections. This paper proposes an improved YOLOv8 algorithm, inc... 详细信息
来源: 评论