Since many years ago, the scientific community is concerned about how to increase the accuracy of different classification methods, and major achievements have been made so far. Besides this issue, the increasing amou...
详细信息
ISBN:
(纸本)9781629935201
Since many years ago, the scientific community is concerned about how to increase the accuracy of different classification methods, and major achievements have been made so far. Besides this issue, the increasing amount of data that is being generated every day by remote sensors raises more challenges to be overcome. In this work, a tool within the scope of InterIMAGE Cloud Platform (ICP), which is an open-source, distributed framework for automatic image interpretation, is presented. The tool, named ICP: Data Mining Package, is able to perform supervised classification procedures on huge amounts of data, usually referred as big data, on a distributed infrastructure using Hadoop MapReduce. The tool has four classification algorithms implemented, taken from WEKA's machine learning library, namely: Decision Trees, Naive Bayes, Random Forest and Support Vector Machines (SVM). The results of an experimental analysis using a SVM classifier on data sets of different sizes for different cluster configurations demonstrates the potential of the tool, as well as aspects that affect its performance.
This paper proposes an analytic hierarchy model (AHM) to evaluate classification algorithms for credit risk analysis. The proposed AHM consists of three stages: data mining stage, multicriteria decision making stage, ...
详细信息
This paper proposes an analytic hierarchy model (AHM) to evaluate classification algorithms for credit risk analysis. The proposed AHM consists of three stages: data mining stage, multicriteria decision making stage, and secondary mining stage. For verification, 2 public-domain credit datasets, 10 classification algorithms, and 10 performance criteria are used to test the proposed AHM in the experimental study. The results demonstrate that the proposed AHM is an efficient tool to select classification algorithms in credit risk analysis, especially when different evaluation algorithms generate conflicting results.
While the RT-PCR is the silver bullet test for confirming the COVID-19 infection, it is limited by the lack of reagents, time-consuming, and the need for specialized labs. As an alternative, most of the prior studies ...
详细信息
While the RT-PCR is the silver bullet test for confirming the COVID-19 infection, it is limited by the lack of reagents, time-consuming, and the need for specialized labs. As an alternative, most of the prior studies have focused on Chest CT images and Chest X-Ray images using deep learning algorithms. However, these two approaches cannot always be used for patients' screening due to the radiation doses, high costs, and the low number of available devices. Hence, there is a need for a less expensive and faster diagnostic model to identify the positive and negative cases of COVID-19. Therefore, this study develops six predictive models for COVID-19 diagnosis using six different classifiers (i.e., BayesNet, Logistic, IBk, CR, PART, and J48) based on 14 clinical features. This study retrospected 114 cases from the Taizhou hospital of Zhejiang Province in China. The results showed that the CR meta-classifier is the most accurate classifier for predicting the positive and negative COVID-19 cases with an accuracy of 84.21%. The results could help in the early diagnosis of COVID-19, specifically when the RT-PCR kits are not sufficient for testing the infection and assist countries, specifically the developing ones that suffer from the shortage of RT-PCR tests and specialized laboratories.
Computational offloading in Mobile Cloud Computing (MCC) has attracted attention due to benefits in energy saving and improved mobile application performance. Nevertheless, this technique underperforms if the offloadi...
详细信息
Computational offloading in Mobile Cloud Computing (MCC) has attracted attention due to benefits in energy saving and improved mobile application performance. Nevertheless, this technique underperforms if the offloading decision ignores contextual information. While recent studies have highlighted the use of contextual information to improve the computational offloading decision, there still remain challenges regarding the dynamic nature of the MCC environment. Most solutions design a single reasoner for the offloading decision and do not know how accurate and precise this technique is, so that when applied in real-world environments it can contribute to inaccurate decisions and consequently the low performance of the overall system. Thus, this paper proposes a Context-Sensitive Offloading System (CSOS) that takes advantage of the main machine-learning reasoning techniques and robust profiling system to provide offloading decisions with high levels of accuracy. We first evaluate the main classification algorithms under our database and the results show that JRIP and J48 classifiers achieves 95% accuracy. Secondly, we develop and evaluate our system under controlled and real scenarios, where context information changes from one experiment to another. Under these conditions, CSOS makes correct decisions as well as ensuring performance gains and energy efficiency. (C) 2018 Elsevier B.V. All rights reserved.
Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study...
详细信息
Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to identify dangerous driving behavior based on a dual-approach study. The analysis was based on the investigation of important risk factors such as average speed, harsh acceleration, harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In order to achieve the objective of this study, data were collected through a driving simulator as well as a naturalistic driving study. To that end, four classification algorithms, namely support vector machines, random forest (RFs), AdaBoost, and multilayer perceptron (MLP) neural networks were implemented and compared. In the simulator experiment, RFs and MLPs emerged as the top-performing models with an accuracy of 84% and 82%, respectively, demonstrating its ability to accurately classify driving behavior in a controlled environment. In the naturalistic driving study, RF and AdaBoost maintained robust performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced precision and recall. The outcomes of this study could provide essential guidance for practitioners and researchers on choosing models for driving behavior classification tasks.
Mobile Ad hoc Networks (MANETs) are wireless networks without fixed infrastructure based on the cooperation of independent mobile nodes. The proliferation of these networks and their use in critical scenarios (like ba...
详细信息
Mobile Ad hoc Networks (MANETs) are wireless networks without fixed infrastructure based on the cooperation of independent mobile nodes. The proliferation of these networks and their use in critical scenarios (like battlefield communications or vehicular networks) require new security mechanisms and policies to guarantee the integrity, confidentiality and availability of the data transmitted. Intrusion Detection Systems used in wired networks are inappropriate in this kind of networks since different vulnerabilities may appear due to resource constraints of the participating nodes and the nature of the communication. This article presents a comparison of the effectiveness of six different classifiers to detect malicious activities in MANETs. Results show that Genetic Programming and Support Vector Machines may help considerably in detecting malicious activities in MANETs. (C) 2012 Elsevier B.V. All rights reserved.
Resistance spot welding (RSW) is a widespread manufacturing process in the automotive industry. There are different approaches for assessing the quality level of RSW joints. Multi-input-single-output methods, which ta...
详细信息
Resistance spot welding (RSW) is a widespread manufacturing process in the automotive industry. There are different approaches for assessing the quality level of RSW joints. Multi-input-single-output methods, which take as inputs either the intrinsic parameters of the welding process or ultrasonic nondestructive testing variables, are commonly used. This work demonstrates that the combined use of both types of inputs can significantly improve the already competitive approach based exclusively on ultrasonic analyses. The use of stacking of tree ensemble models as classifiers dominates the classification results in terms of accuracy, F-measure and area under the receiver operating characteristic curve metrics. Through variable importance analyses, the results show that although the welding process parameters are less relevant than the ultrasonic testing variables, some of the former provide marginal information not fully captured by the latter.
This paper attempts to lay bare the underlying ideas used in various pattern classification algorithms reported in the literature. It is shown that these algorithms can be classified according to the type of input inf...
详细信息
This paper attempts to lay bare the underlying ideas used in various pattern classification algorithms reported in the literature. It is shown that these algorithms can be classified according to the type of input information required and that the techniques of estimation, decision, and optimization theory can be used effectively to derive known as well as new results.
The use of different types of Clinical Decision Support Systems (CDSS) makes possible the improvement of the quality of the therapeutic and diagnostic efficiency in health field. Those systems, properly implemented, a...
详细信息
The use of different types of Clinical Decision Support Systems (CDSS) makes possible the improvement of the quality of the therapeutic and diagnostic efficiency in health field. Those systems, properly implemented, are able to simulate human expert clinician reasoning in order to suggest decisions on treatment of patients. In this paper, we exploit fuzzy inference machines to improve the quality of the day-by-day clinical care of type-2 diabetic patients of Anti-Diabetes Centre (CAD) of the Local Health Authority ASL Naples 1 (Naples, Italy). All the designed functionalities were developed thanks to the experience on the field, through different phases (data collection and adjustment, Fuzzy Inference System development and its validation on real cases) executed by an interdisciplinary research team comprising doctors, clinicians and IT engineers. The proposed approach also allows the remote monitoring of patients' clinical conditions and, hence, can help to reduce hospitalizations.
Phishing activities remain a persistent security threat, with global losses exceeding 2.7 billion USD in 2018, according to the FBI's Internet Crime Complaint Center. In literature, different generations of phishi...
详细信息
Phishing activities remain a persistent security threat, with global losses exceeding 2.7 billion USD in 2018, according to the FBI's Internet Crime Complaint Center. In literature, different generations of phishing websites detection methods have been observed. The oldest methods include manual blacklisting of known phishing websites' URLs in the centralized database, but they have not been able to detect newly launched phishing websites. More recent studies have attempted to solve phishing websites detection as a supervised machine learning problem on phishing datasets, designed on features extracted from phishing websites' URLs. These studies have shown some classification algorithms performing better than others on differently designed datasets but have not distinguished the best classification algorithm for the phishing websites detection problem in general. The purpose of this research is to compare classic supervised machine learning algorithms on all publicly available phishing datasets with predefined features and to distinguish the best performing algorithm for solving the problem of phishing websites detection, regardless of a specific dataset design. Eight widely used classification algorithms were configured in Python using the Scikit Learn library and tested for classification accuracy on all publicly available phishing datasets. Later, classification algorithms were ranked by accuracy on different datasets using three different ranking techniques while testing the results for a statistically significant difference using Welch's T-Test. The comparison results are presented in this paper, showing ensembles and neural networks outperforming other classical algorithms.
暂无评论