咨询与建议

限定检索结果

文献类型

  • 131 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 183 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 178 篇 工学
    • 143 篇 计算机科学与技术...
    • 97 篇 电气工程
    • 43 篇 软件工程
    • 16 篇 电子科学与技术(可...
    • 16 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 183 篇 camouflaged obje...
  • 31 篇 deep learning
  • 25 篇 object detection
  • 25 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 image segmentati...
  • 12 篇 visualization
  • 12 篇 attention mechan...
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 data mining
  • 6 篇 computer vision
  • 6 篇 feature aggregat...
  • 5 篇 transformers
  • 5 篇 convolution

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 dalian minzu uni...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 wang anzhi
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi

语言

  • 183 篇 英文
检索条件"主题词=Camouflaged Object Detection"
183 条 记 录,以下是91-100 订阅
排序:
Guided multi-scale refinement network for camouflaged object detection
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第4期82卷 5785-5801页
作者: Xu, Xiuqi Chen, Shuhan Lv, Xiao Wang, Jian Hu, Xuelong Yangzhou Univ Sch Informat Engn Yangzhou Jiangsu Peoples R China Chongqing Special Equipment Inspect & Res Inst Chongqing Peoples R China
The purpose of camouflaged object detection (COD) is to identify the hidden camouflaged object in an input image. Compared with other binary segmentation tasks like salient object detection, COD needs to deal with mor... 详细信息
来源: 评论
MGL: Mutual Graph Learning for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2023年 32卷 1897-1910页
作者: Zhai, Qiang Li, Xin Yang, Fan Jiao, Zhicheng Luo, Ping Cheng, Hong Liu, Zicheng Univ Elect Sci & Technol China Ctr Robot Chengdu 611731 Peoples R China AIQ Abu Dhabi U Arab Emirates Brown Univ Radiol AI Lab Providence RI 02912 USA Univ Hong Kong Sch Comp Sci Hong Kong Peoples R China Microsoft AI Percept & Mixed Real Redmond WA 98101 USA
camouflaged object detection, which aims to detect/segment the object(s) that blend in with their surrounding, remains challenging for deep models due to the intrinsic similarities between foreground objects and backg... 详细信息
来源: 评论
camouflaged object detection Based on Ternary Cascade Perception
收藏 引用
REMOTE SENSING 2023年 第5期15卷 1188页
作者: Jiang, Xinhao Cai, Wei Ding, Yao Wang, Xin Yang, Zhiyong Di, Xingyu Gao, Weijie Xian Res Inst High Technol Xian 710064 Peoples R China
camouflaged object detection (COD), in a broad sense, aims to detect image objects that have high degrees of similarity to the background. COD is more challenging than conventional object detection because of the high... 详细信息
来源: 评论
Key object detection: Unifying Salient and camouflaged object detection Into One Task  7th
Key Object Detection: Unifying Salient and Camouflaged Objec...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Yin, Pengyu Fu, Keren Zhao, Qijun Sichuan Univ Coll Comp Sci Chengdu Peoples R China Sichuan Univ Natl Key Lab Fundamental Sci Synthet Vis Chengdu Peoples R China
Visual salient object detection (SOD) aims to discover eye-catching salient objects, while camouflaged object detection (COD) seeks to segment objects that are visually hidden in their surrounding environment. In this... 详细信息
来源: 评论
Attention and Boundary Induced Feature Refinement Network for camouflaged object detection  7th
Attention and Boundary Induced Feature Refinement Network fo...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Zhong, Junmin Wang, Anzhi Guizhou Normal Univ Sch Big Data & Comp Sci Guiyang 550025 Peoples R China
The intrinsic similarity between camouflaged objects and background environment makes camouflaged object detection (COD) task more challenging than traditional object detection task. Since the boundary of the camoufla... 详细信息
来源: 评论
ECLNet: A Compact Encoder-Decoder Network for Efficient camouflaged object detection  7th
ECLNet: A Compact Encoder-Decoder Network for Efficient Camo...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Yang, Longwu Chen, Haiyan Lu, Dongni Qin, Jie Nanjing Univ Aeronaut & Astronaut Nanjing 210016 Peoples R China
camouflaged object detection (COD) is a valuable yet challenging task due to the resemblance between target objects and their surroundings. Existing methods have made impressive progress on COD by focusing on accurate... 详细信息
来源: 评论
Boundary Guided Feature Fusion Network for camouflaged object detection  6th
Boundary Guided Feature Fusion Network for Camouflaged Objec...
收藏 引用
6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Qiu, Tianchi Li, Xiuhong Liu, Kangwei Li, Songlin Chen, Fan Zhou, Chenyu Xinjiang Univ Sch Informat Sci & Engn Xinjiang Peoples R China
camouflaged object detection (COD) refers to the process of detecting and segmenting camouflaged objects in an environment using algorithmic techniques. The intrinsic similarity between foreground objects and the back... 详细信息
来源: 评论
Bi-directional Boundary-object interaction and refinement network for camouflaged object detection
Bi-directional Boundary-object interaction and refinement ne...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yang, Jicheng Zhang, Qing Zhao, Yilin Li, Yuetong Liu, Zeming Shanghai Inst Technol Shanghai Peoples R China
Due to the high intrinsic similarity between the camouflaged objects and the background, the predicted edge cue might be inaccurate or even erroneous. This will degrade the detection performance when such edge cues ar... 详细信息
来源: 评论
Semi-Supervised camouflaged object detection: Multi Information Fusion Combined with Adaptive Receptive Field Selection Network  7th
Semi-Supervised Camouflaged Object Detection: Multi Informat...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Yang, Guang Xiao, Feng Liu, Ruyu Zhang, Jiawei Zhang, Jianhua Chen, Shengyong Tianjin Univ Technol Tianjin 300380 Peoples R China Hangzhou Normal Univ Hangzhou 311121 Peoples R China
camouflaged object detection is focused on segmenting objects concealed within their surroundings. This technology can be applied in various fields such as medical image analysis, wildlife conservation, autonomous dri... 详细信息
来源: 评论
Using High-Quality Feature for Weakly-Supervised camouflaged object detection  8th
Using High-Quality Feature for Weakly-Supervised Camouflaged...
收藏 引用
8th International Joint Conference on Web and Big Data and Web-Age Information Management (APWeb-WAIM)
作者: Wu, Weijie Tong, Yiqiu Jiang, Qijun Chen, Lina Gao, Hong Zhejiang Normal Univ Coll Phys & Elect Informat Engn Jinhua Zhejiang Peoples R China Zhejiang Normal Univ Sch Comp Sci & Technol Jinhua Zhejiang Peoples R China
camouflaged objects appear almost identical to the background, which leads to low-level features carrying a large amount of noise, and redundant information being included in high-level features. Therefore, we propose... 详细信息
来源: 评论