咨询与建议

限定检索结果

文献类型

  • 131 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 183 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 178 篇 工学
    • 143 篇 计算机科学与技术...
    • 97 篇 电气工程
    • 43 篇 软件工程
    • 16 篇 电子科学与技术(可...
    • 16 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 183 篇 camouflaged obje...
  • 31 篇 deep learning
  • 25 篇 object detection
  • 25 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 image segmentati...
  • 12 篇 visualization
  • 12 篇 attention mechan...
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 data mining
  • 6 篇 computer vision
  • 6 篇 feature aggregat...
  • 5 篇 transformers
  • 5 篇 convolution

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 dalian minzu uni...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 wang anzhi
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi

语言

  • 183 篇 英文
检索条件"主题词=Camouflaged Object Detection"
183 条 记 录,以下是101-110 订阅
Fuzzy Boundary-Guided Network for camouflaged object detection
Fuzzy Boundary-Guided Network for Camouflaged Object Detecti...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Jia, Qi Yao, Shuilian Xu, Youcan Liu, Yu Kong, Dehao Latecki, Longin Jan Dalian Univ Technol Dalian Peoples R China Temple Univ Philadelphia PA USA
camouflaged object detection (COD) is a challenging task that identifies camouflaged objects from highly similar backgrounds. Existing methods typically treat the whole object equally while neglecting the indistinguis... 详细信息
来源: 评论
Boundary-Guided Fusion of Multi-Level Features Network for camouflaged object detection
Boundary-Guided Fusion of Multi-Level Features Network for C...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Li, Songlin Li, Zhe Li, Boyuan Li, Xiuhong Sheng, Jiabao Xinjiang Univ Sch Comp Sci & Technol Urumqi Peoples R China Xinjiang Univ Xinjiang Key Lab Signal Detect & Proc Urumqi Peoples R China Hong Kong Polytech Univ Dept Elect & Elect Engn Hong Kong 999077 Peoples R China
camouflaged objects, exhibiting high similarity with their surroundings, pose a substantial challenge for both humans and machines to detect when concealed within the environment. Existing methods for camouflage objec... 详细信息
来源: 评论
Deep Learning Advances in camouflaged object detection  10
Deep Learning Advances in Camouflaged Object Detection
收藏 引用
10th International Conference on Big Data and Information Analytics
作者: Chen, Yan Xie, Yuxiang Wei, Yingmei Natl Univ Def Technol Lab Big Data & Decis Changsha Hunan Peoples R China
camouflaged object detection (COD) in computer vision is a complex task, focusing on identifying and delineating subjects that closely resemble their surroundings. The method finds extensive use across various sectors... 详细信息
来源: 评论
EDGE ATTENTION LEARNING FOR EFFICIENT camouflaged object detection  49
EDGE ATTENTION LEARNING FOR EFFICIENT CAMOUFLAGED OBJECT DET...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Liu, Zijian Jiang, Ping Lin, Lixin Deng, Xiaoheng Cent South Univ Sch Comp Sci & Engn Changsha Peoples R China Cent South Univ Shenzhen Res Intitute Changsha Peoples R China
Detecting camouflaged objects is expected to be a challenging task due to the hard-distinguihsed boundaries of targets. Although existing learning-based methods have concentrated on utilizing boundary information to e... 详细信息
来源: 评论
Designing a Lightweight Convolutional Neural Network for camouflaged object detection  48
Designing a Lightweight Convolutional Neural Network for Cam...
收藏 引用
48th Annual IEEE International Computers, Software, and Applications Conference (COMPSAC) - Digital Development for a Better Future
作者: Gonzales, Mark Edward M. Ibrahim, Hans Oswald A. Ong, Elyssia Barrie H. Laguna, Ann Franchesca B. De La Salle Univ Dept Software Technol Manila Philippines De La Salle Univ Dept Comp Technol Manila Philippines
camouflaged object detection is a challenging task due to the high visual similarity between the object of interest and its surroundings. While deep learning models have shown promising performance, the size and power... 详细信息
来源: 评论
HIERARCHICALLY AGGREGATED IDENTIFICATION TRANSFORMER NETWORK FOR camouflaged object detection
HIERARCHICALLY AGGREGATED IDENTIFICATION TRANSFORMER NETWORK...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Phung, Thanh Hai Chen, Hung-Jen Shuai, Hong-Han
camouflaged object detection (COD) targets the segmentation of objects hidden in intricate environments, a task complicated by the pronounced similarities between objects and their surroundings. The diverse appearance... 详细信息
来源: 评论
camouflaged object detection with counterfactual intervention
收藏 引用
NEUROCOMPUTING 2023年 第1期553卷
作者: Li, Xiaofei Li, Hongying Zhou, Hao Yu, Miaomiao Chen, Dong Li, Shuohao Zhang, Jun Natl Univ Def Technol Lab Big Data & Decis 109 Deya Rd Changsha 410003 Hunan Peoples R China Naval Univ Engn Dept Operat & Planning 717 Jianshe Ave Wuhan 430033 Hubei Peoples R China Natl Univ Def Technol Sci & Technol Informat Syst Engn Lab 109 Deya Rd Changsha 410003 Hunan Peoples R China
camouflaged object detection (COD) aims to identify camouflaged objects hiding in their surroundings, which is a valuable yet challenging task. The main challenge is that there are ambiguous semantic biases in the cam... 详细信息
来源: 评论
Edge-Guided Multilevel Feature Fusion Network for Lightweight camouflaged object detection
Edge-Guided Multilevel Feature Fusion Network for Lightweigh...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhang, Xingpeng Gao, Meilin Gao, Guohai Wang, Xin Wang, Qiuli Southwest Petr Univ Sch Comp Sci & Software Engn Chengdu 610500 Peoples R China Army Med Univ Dept Radiol Affiliated Hosp 1 Chongqing 400032 Peoples R China Engn Res Ctr Intelligent Oil & Gas Explorat & Dev Chengdu 610500 Peoples R China
camouflaged object detection (COD) aims to accurately recognize targets in intricate environments that blend into the background. Although numerous camouflage object identification techniques have demonstrated effecti... 详细信息
来源: 评论
Lightweight camouflaged object detection Network Based on Feature Complementation and Enhancement
Lightweight Camouflaged Object Detection Network Based on Fe...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Liu, Kangwei Li, Xiuhong Li, Boyuan Zhang, Yuye Che, Chao Sch Comp Sci & Technol Urumqi Peoples R China
Recently, CNN-based camouflaged object detection methods are dedicated to improving detection performance, thereby ignoring the huge amount of parameters and computations it brings. And, current methods ignore the imp... 详细信息
来源: 评论
Dual Guidance Enhancing camouflaged object detection via Focusing Boundary and Localization Representation
Dual Guidance Enhancing Camouflaged Object Detection via Foc...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Li, Songlin Li, Xiuhong Li, Zhe Ma, Hongbing Sheng, Jiabao Li, Boyuan Xinjiang Univ Sch Comp Sci & Technol Urumgi Peoples R China Hong Kong Polytech Univ Dept Elect & Elect Engn Hong Kong Peoples R China Stanford Univ Dept Elect Engn Stanford CA 94305 USA Tsinghua Univ Dept Elect Engn Beijing Peoples R China Hong Kong Polytech Univ Dept Hlth Technol & Informat Hong Kong Peoples R China Stanford Univ Dept Radiat Oncol Stanford CA 94305 USA
camouflaged object detection (COD) aims to segment objects that blend into their surrounding environment. However, low-level features in the shallow layers of neural networks, although rich in edge information, often ... 详细信息
来源: 评论