咨询与建议

限定检索结果

文献类型

  • 131 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 183 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 178 篇 工学
    • 143 篇 计算机科学与技术...
    • 97 篇 电气工程
    • 43 篇 软件工程
    • 16 篇 电子科学与技术(可...
    • 16 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 183 篇 camouflaged obje...
  • 31 篇 deep learning
  • 25 篇 object detection
  • 25 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 image segmentati...
  • 12 篇 visualization
  • 12 篇 attention mechan...
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 data mining
  • 6 篇 computer vision
  • 6 篇 feature aggregat...
  • 5 篇 transformers
  • 5 篇 convolution

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 dalian minzu uni...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 wang anzhi
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi

语言

  • 183 篇 英文
检索条件"主题词=Camouflaged Object Detection"
183 条 记 录,以下是111-120 订阅
Edge-guided Contextual Attention Fusion Network for camouflaged object detection  24
Edge-guided Contextual Attention Fusion Network for Camoufla...
收藏 引用
3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy (CSAIDE)
作者: Hu, Bo Chen, Sibao Anhui Univ Sch Comp Sci & Technol Anhui Prov Key Lab Informat Mat & Intelligent Sen Hefei 230601 Anhui Peoples R China
camouflaged object detection (COD), with the aim of detecting camouflaged objects from similar backgrounds, is a rewarding but challenging task. A major challenge is that intrinsic similarity between foreground object... 详细信息
来源: 评论
Emphasizing Boundary-Positioning and Leveraging Multi-scale Feature Fusion for camouflaged object detection  6th
Emphasizing Boundary-Positioning and Leveraging Multi-scale ...
收藏 引用
6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Li, Songlin Li, Xiuhong Li, Zhe Li, Boyuan Zhou, Chenyu Chen, Fan Qiu, Tianchi Li, Zeyu Xinjiang Univ Sch Informat Sci & Engn Xinjiang Peoples R China Hong Kong Polytech Univ Dept Elect & Elect Engn Hong Kong Peoples R China Dalian Minzu Univ Sch Comp Sci & Engn Dalian Peoples R China
camouflaged object detection (COD) aims to identify objects that blend in with their surroundings and have numerous practical applications. However, COD is a challenging task due to the high similarity between camoufl... 详细信息
来源: 评论
EDGE-GUIDED PIXEL LEVEL CONNECTED COMPONENT ASSISTED camouflaged object detection  31
EDGE-GUIDED PIXEL LEVEL CONNECTED COMPONENT ASSISTED CAMOUFL...
收藏 引用
2024 International Conference on Image Processing
作者: Wang, Qingwang Qu, Xin Zhou, Liyao Jin, Pengcheng Fu, Chengbiao Shen, Tao Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming Yunnan Peoples R China
Due to the inherent visual similarity between the camouflaged object and background, camouflaged object detection (COD) is widely recognized as a challenging task in the field of computer vision, and traditional objec... 详细信息
来源: 评论
Certainty-guided Reasoning and Refinement Network for camouflaged object detection
Certainty-guided Reasoning and Refinement Network for Camouf...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Lai, Bifan Sun, Meijun Zhao, Junkun Zhou, Yan College of Intelligence and Computing Tianjin University Tianjin China School of Disaster and Emergency Medicine Tianjin University Tianjin China
camouflaged object detection (COD), which aims to segment objects that are highly similar to their background, is a valuable yet challenging task. Due to the interference of clutter and noise in the background, existi... 详细信息
来源: 评论
Rethinking camouflaged object detection via Foreground-Background Interactive Learning
Rethinking Camouflaged Object Detection via Foreground-Backg...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zhang, Chenxi Zhang, Qing Wu, Jiayun Faculty of Intelligence Technology Shanghai Institute of Technology Shanghai China
camouflaged object detection focuses on the challenge of segmenting objects that visually blend into their background. The effectiveness of camouflage strategies hinges on how well objects interact with their backgrou... 详细信息
来源: 评论
FindNet: Can You Find Me? Boundary-and-Texture Enhancement Network for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 6396-6411页
作者: Li, Peng Yan, Xuefeng Zhu, Hongwei Wei, Mingqiang Zhang, Xiao-Ping Qin, Jing Nanjing Univ Aeronaut & Astronaut Sch Comp Sci & Technol Nanjing 210016 Peoples R China Ryerson Univ Dept Elect Comp & Biomed Engn Toronto ON M5B 2K3 Canada Hong Kong Polytech Univ Sch Nursing Hong Kong Peoples R China
camouflaged objects share very similar colors but have different semantics with the surroundings. Cognitive scientists observe that both the global contour (i.e., boundary) and the local pattern (i.e., texture) of cam... 详细信息
来源: 评论
Rethinking camouflaged object detection: Models and Datasets
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2022年 第9期32卷 5708-5724页
作者: Bi, Hongbo Zhang, Cong Wang, Kang Tong, Jinghui Zheng, Feng Northeast Petr Univ Dept Elect Informat Engn Daqing 163318 Peoples R China Northeast Petr Univ Elect Engn Informat Dept Daqing 163318 Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Peoples R China
camouflaged object detection (COD) is an emerging visual detection task, which aims to locate and distinguish the disguised target in complex backgrounds by imitating the human visual detection system. Recently, COD h... 详细信息
来源: 评论
Frequency Perception Network for camouflaged object detection  23
Frequency Perception Network for Camouflaged Object Detectio...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Cong, Runmin Sun, Mengyao Zhang, Sanyi Zhou, Xiaofei Zhang, Wei Zhao, Yao Shandong Univ Minist Educ Sch Control Sci & Engn Key Lab Machine Intelligence & Syst Control Jinan Shandong Peoples R China Beijing Jiaotong Univ Inst Informat Sci Beijing Key Lab Adv Informat Sci & Network Techno Beijing Peoples R China Chinese Acad Sci State Key Lab Informat Secur SKLOIS Inst Informat Engn Beijing Peoples R China Hangzhou Dianzi Univ Sch Automat Hangzhou Zhejiang Peoples R China
camouflaged object detection (COD) aims to accurately detect objects hidden in the surrounding environment. However, the existing COD methods mainly locate camouflaged objects in the RGB domain, their performance has ... 详细信息
来源: 评论
OAFormer: Occlusion Aware Transformer for camouflaged object detection
OAFormer: Occlusion Aware Transformer for Camouflaged Object...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yang, Xin Zhu, Hengliang Mao, Guojun Xing, Shuli FuJian Univ Technol Coll Comp Sci & Math Fuzhou Peoples R China
camouflaged object usually have a similar appearance or color to their surrounding environment, so it's difficult to be detected, especially in heavily obscured situations. To deal with this challenge, in this pap... 详细信息
来源: 评论
Frequency Representation Integration for camouflaged object detection  23
Frequency Representation Integration for Camouflaged Object ...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Xie, Chenxi Xia, Changqun Yu, Tianshu Li, Jia Beihang Univ SCSE State Key Lab Virtual Real Technol & Syst Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Recent camouflaged object detection (COD) approaches have been proposed to accurately segment objects blended into surroundings. The most challenging and critical issue in COD is to find out the lines of demarcation b... 详细信息
来源: 评论