咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 136 篇 计算机科学与技术...
    • 89 篇 电气工程
    • 38 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 180 篇 camouflaged obje...
  • 31 篇 deep learning
  • 24 篇 object detection
  • 24 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 attention mechan...
  • 11 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 computer vision
  • 5 篇 transformers
  • 5 篇 convolution
  • 5 篇 data mining
  • 5 篇 cross-level feat...

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...
  • 2 篇 minist educ key ...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi
  • 4 篇 ren junchao

语言

  • 180 篇 英文
检索条件"主题词=Camouflaged Object Detection"
180 条 记 录,以下是11-20 订阅
排序:
Multi-information guided camouflaged object detection
收藏 引用
IMAGE AND VISION COMPUTING 2025年 156卷
作者: Shi, Caijuan Zhao, Lin Wang, Rui Zhang, Kun Kong, Fanyue Duan, Changyu North China Univ Sci & Technol Coll Artificial Intelligence Tangshan 063210 Hebei Peoples R China Hebei Key Lab Ind Intelligent Percept Tangshan 063210 Hebei Peoples R China
camouflaged object detection (COD) aims to identify the objects hidden in the background environment. Though more and more COD methods have been proposed in recent years, existing methods still perform poorly for dete... 详细信息
来源: 评论
EPFDNet: camouflaged object detection with edge perception infrequency domain
收藏 引用
IMAGE AND VISION COMPUTING 2025年 154卷
作者: Fang, Xian Chen, Jiatong Wang, Yaming Jiang, Mingfeng Ma, Jianhua Wang, Xin Zhejiang Sci Tech Univ Sch Comp Sci & Technol Hangzhou 310018 Peoples R China Lishui Univ Key Lab Digital Design & Intelligent Manufacture C Lishui 323000 Peoples R China
camouflaged object detection (COD) is a relatively new field of computer vision research. The challenge of this task lies in accurately segmenting camouflaged objects from backgrounds that are similar in appearance. I... 详细信息
来源: 评论
Boundary-guided multi-scale refinement network for camouflaged object detection
收藏 引用
VISUAL COMPUTER 2025年 第8期41卷 6271-6297页
作者: Ye, Qian Li, Qingwu Huo, Guanying Liu, Yan Zhou, Yan Hohai Univ Coll Informat Sci & Engn Changzhou 213200 Peoples R China Hohai Univ Jiangsu Key Lab Power Transmiss & Distribut Equipm Changzhou 213200 Peoples R China
camouflaged object detection (COD) is significantly more challenging than traditional salient object detection (SOD) due to the high intrinsic similarity between camouflaged objects and their backgrounds, as well as c... 详细信息
来源: 评论
Multidimensional fusion of frequency and spatial domain information for enhanced camouflaged object detection
收藏 引用
INFORMATION FUSION 2025年 117卷
作者: Wang, Tingran Yu, Zaiyang Fang, Jianwei Xie, Jinlong Yang, Feng Zhang, Huang Zhang, Liping Du, Minghua Li, Lusi Ning, Xin China Univ Min & Technol Beijing Sch Artificial Intelligence Beijing 100083 Peoples R China Chinese Acad Sci Inst Semicond AnnLab Beijing 100085 Peoples R China China Unicom Software Res Inst Beijing 100048 Peoples R China Univ Chinese Acad Sci Coll Mat Sci & Optoelect Technol Beijing 100049 Peoples R China Chinese Peoples Liberat Army Gen Hosp Med Ctr 1 Dept Emergency Beijing 100853 Peoples R China Old Dominion Univ Dept Comp Sci Norfolk VA 23529 USA
camouflaged object detection (COD) remains a challenging task in computer vision due to the difficulty of distinguishing highly similar targets from complex backgrounds. Existing COD methods often struggle with scene ... 详细信息
来源: 评论
A three-stage model for camouflaged object detection
收藏 引用
NEUROCOMPUTING 2025年 614卷
作者: Chen, Tianyou Ruan, Hui Wang, Shaojie Xiao, Jin Hu, Xiaoguang Chinese Aeronaut Radio Elect Res Inst Shanghai 200241 Peoples R China Minist Ind & Informat Technol Elect Res Inst 5 Guangzhou 511370 Peoples R China Beihang Univ Beijing 100191 Peoples R China
camouflaged objects are typically assimilated into their backgrounds and exhibit fuzzy boundaries. The complex environmental conditions and the high intrinsic similarity between camouflaged targets and their surroundi... 详细信息
来源: 评论
FLRNet: A bio-inspired three-stage network for camouflaged object detection via filtering, localization and refinement
收藏 引用
NEUROCOMPUTING 2025年 626卷
作者: Zhao, Yilin Zhang, Qing Li, Yuetong Shanghai Inst Technol Sch Comp Sci & Informat Engn Shanghai 201418 Peoples R China
camouflaged object detection (COD) aims to segment camouflaged objects, which poses amore challenging task than generic object detection due to the high intrinsic similarity between the foreground and background. In t... 详细信息
来源: 评论
Contextual feature fusion and refinement network for camouflaged object detection
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2025年 第3期16卷 1489-1505页
作者: Yang, Jinyu Shi, Yanjiao Jiang, Ying Lu, Zixuan Yi, Yugen Shanghai Inst Technol Sch Comp Sci & Informat Engn Shanghai 201418 Peoples R China Jiangxi Normal Univ Sch Software Nanchang 330022 Peoples R China
camouflaged object detection (COD) is a challenging task due to its irregular shape and color similarity or even blending into the surrounding environment. It is difficult to achieve satisfactory results by directly u... 详细信息
来源: 评论
Seamless detection: Unifying Salient object detection and camouflaged object detection
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 274卷
作者: Liu, Yi Li, Chengxin Dong, Xiaohui Li, Lei Zhang, Dingwen Xu, Shoukun Han, Jungong Changzhou Univ Sch Comp Sci & Artificial Intelligence Changzhou 213159 Peoples R China Sci & Technol Complex Syst Control & Intelligent A Beijing Peoples R China Northwestern Polytech Univ Sch Automat Xian 710129 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
Achieving joint learning of Salient object detection (SOD) and camouflaged object detection (COD) is extremely challenging due to their distinct object characteristics, i.e., saliency and camouflage. The only prelimin... 详细信息
来源: 评论
CSFIN: A lightweight network for camouflaged object detection via cross-stage feature interaction
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 269卷
作者: Li, Minghong Zhao, Yuqian Zhang, Fan Gui, Gui Luo, Biao Yang, Chunhua Gui, Weihua Chang, Kan Cent South Univ Sch Automat Changsha 410083 Hunan Peoples R China Cent South Univ Key Lab Ind Intelligence & Syst Minist Educ Changsha 410083 Hunan Peoples R China Guangxi Univ Sch Comp & Elect Informat Nanning 530004 Guangxi Peoples R China Guangxi Univ Guangxi Key Lab Multimedia Commun & Network Techno Nanning 530004 Guangxi Peoples R China
camouflaged object detection (COD) aims to identify the objects that are hidden in their surroundings, which is a very challenging task due to factors like complex contours and high similarity to the background. Exist... 详细信息
来源: 评论
An edge-aware high-resolution framework for camouflaged object detection
收藏 引用
IMAGE AND VISION COMPUTING 2025年 157卷
作者: Ma, Jingyuan Chen, Tianyou Xiao, Jin Hu, Xiaoguang Wang, Yingxun Beihang Univ Beijing 100191 Peoples R China Chinese Aeronaut Radio Elect Res Inst Shanghai 200241 Peoples R China Inst Remote Sensing Satellite Beijing 100094 Peoples R China
camouflaged objects are often seamlessly assimilated into their surroundings and exhibit indistinct boundaries. The complex environmental conditions and the high intrinsic similarity between camouflaged targets and th... 详细信息
来源: 评论