咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 136 篇 计算机科学与技术...
    • 89 篇 电气工程
    • 38 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 180 篇 camouflaged obje...
  • 31 篇 deep learning
  • 24 篇 object detection
  • 24 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 attention mechan...
  • 11 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 computer vision
  • 5 篇 transformers
  • 5 篇 convolution
  • 5 篇 data mining
  • 5 篇 cross-level feat...

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...
  • 2 篇 minist educ key ...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi
  • 4 篇 ren junchao

语言

  • 180 篇 英文
检索条件"主题词=Camouflaged Object Detection"
180 条 记 录,以下是21-30 订阅
排序:
Progressive Region-to-Boundary Exploration Network for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2025年 27卷 236-248页
作者: Yue, Guanghui Wu, Shangjie Zhou, Tianwei Li, Gang Du, Jie Luo, Yu Jiang, Qiuping Shenzhen Univ Sch Biomed Engn Guangdong Key Lab Biomed Measurements & Ultrasound Natl Reg Key Technol Engn Lab Med UltrasoundMed S Shenzhen 518060 Peoples R China Shenzhen Univ Marshall Lab Biomed Engn Shenzhen 518060 Peoples R China Shenzhen Univ Coll Management Shenzhen 518060 Peoples R China Baicheng Normal Univ Sch Mech & Control Engn Baicheng 137000 Peoples R China Guangdong Univ Technol Sch Comp Sci Guangzhou 510006 Peoples R China Ningbo Univ Fac Informat Sci & Engn Ningbo 315211 Peoples R China
camouflaged object detection (COD) aims to segment targeted objects that have similar colors, textures, or shapes to their background environment. Due to the limited ability in distinguishing highly similar patterns, ... 详细信息
来源: 评论
ESNet: An Efficient Skeleton-guided Network for camouflaged object detection
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 311卷
作者: Ren, Peng Bai, Tian Sun, Fuming Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China Dalian Minzu Univ Sch Informat & Commun Engn Dalian 116600 Peoples R China
Although most of the existing camouflaged object detection methods achieve significant progress, they still have limitations in the following aspects. Firstly, they usually ignore the internal topological structure of... 详细信息
来源: 评论
Semantic-spatial guided context propagation network for camouflaged object detection
收藏 引用
APPLIED INTELLIGENCE 2025年 第5期55卷 1-15页
作者: Ren, Junchao Zhang, Qiao Kang, Bingbing Zhong, Yuxi He, Min Ge, Yanliang Bi, Hongbo Northeast Petr Univ Sch Elect & Informat Engn Daqing 163318 Peoples R China China Univ Petr East China Sch Comp Sci & Technol Qingdao 266580 Peoples R China Pingdingshan Univ Henan Engn Lab Intelligent Med Internet Things Tec Pingdingshan 467000 Peoples R China China Mobile Commun Grp Heilongjiang Co Ltd Daqing Branch Daqing 163318 Heilongjiang Peoples R China
camouflaged object detection (COD) aims to detect objects that blend in with their surroundings and is a challenging task in computer vision. High-level semantic information and low-level spatial information play impo... 详细信息
来源: 评论
Polarization-based camouflaged object detection with high-resolution adaptive fusion Network
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 146卷
作者: Wang, Xin Xu, Junfeng Ding, Jiajia Hefei Univ Technol Sch Comp & Informat Hefei 230009 Anhui Peoples R China Intelligent Interconnected Syst Lab Anhui Prov Hefei 230009 Anhui Peoples R China
In comparison to traditional object detection or segmentation tasks, camouflaged object detection (COD) poses greater challenges, as humans are often perplexed or deceived by the inherent similarities between foregrou... 详细信息
来源: 评论
Frequency-Guided Spatial Adaptation for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2025年 27卷 72-83页
作者: Zhang, Shizhou Kong, Dexuan Xing, Yinghui Lu, Yue Ran, Lingyan Liang, Guoqiang Wang, Hexu Zhang, Yanning Northwestern Polytech Univ Sch Comp Sci Natl Engn Lab Integrated Aerosp Ground Ocean Big D Xian 710072 Peoples R China Northwestern Polytech Univ Shenzhen Res & Dev Inst Shenzhen 518057 Peoples R China Northwest Univ Sch Informat & Technol Xian 710127 Peoples R China Xijing Univ Xian Key Lab Human Machine Integrat & Control Tech Xian 710123 Peoples R China
camouflaged object detection (COD) aims to segment camouflaged objects which exhibit very similar patterns with the surrounding environment. Recent research works have shown that enhancing the feature representation v... 详细信息
来源: 评论
Skeleton-Boundary-Guided Network for camouflaged object detection
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2025年 第3期21卷 1-21页
作者: Niu, Yuzhen Xu, Yeyuan Li, Yuezhou Zhang, Jiabang Chen., Yuzhong Fuzhou Univ Fuzhou Peoples R China Minist Educ Engn Res Ctr BigData Intelligence Fuzhou Peoples R China
camouflaged object detection (COD) aims to resolve the tough issue of accurately segmenting objects hidden in the surroundings. However, the existing methods suffer from two major problems: the incomplete interior and... 详细信息
来源: 评论
Dual region mutual enhancement network for camouflaged object detection
收藏 引用
IMAGE AND VISION COMPUTING 2025年 158卷
作者: Yin, Chao Li, Xiaoqiang Shanghai Univ Sch Comp Engn & Sci Shanghai 200444 Peoples R China
camouflaged object detection (COD) is a promising yet challenging task that aims to segment objects hidden in intricate surroundings. Current methods often struggle with identifying background regions that resemble ca... 详细信息
来源: 评论
Spatial Bi-Exploration for Robust camouflaged object detection
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2025年 32卷 1251-1255页
作者: Zhang, Jialin Wang, Xiao Yuan, Xin Mu, Nan Wang, Zheng Wuhan Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430081 Peoples R China Wuhan Univ Sci & Technol Hubei Prov Key Lab Intelligent Informat Proc & Rea Wuhan 430081 Peoples R China
camouflaged object detection (COD) aims to segment camouflaged objects hidden within their environment. Existing COD models, aside from image features, mostly focus on a single coarse-grained spatial structure, such a... 详细信息
来源: 评论
Vision-Inspired Boundary Perception Network for Lightweight camouflaged object detection
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2025年 32卷 1176-1180页
作者: Chen, Chunyuan Liang, Weiyun Wang, Donglin Wang, Bin Xu, Jing Nankai Univ Coll Artificial Intelligence Tianjin 300350 Peoples R China Nankai Univ Ocean Engn Res Ctr Tianjin 300350 Peoples R China Beijing Sursen Informat Technol Co Ltd Beijing 100080 Peoples R China
Lightweight camouflaged object detection (COD) has garnered increasing attention due to its wide range of real-world applications and its efficiency on mobile devices. Existing lightweight COD methods typically attemp... 详细信息
来源: 评论
Multi-view learning for camouflaged object detection with PVTv2
收藏 引用
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL 2025年 第2期14卷 1-11页
作者: Yan, Pu Ruan, Kang Wang, Lili Zhao, Yang Wang, Xu Anhui Jianzhu Univ Sch Elect & Informat Engn Hefei 230601 Anhui Peoples R China
Recently, with the continuous development in the field of camouflaged object detection (COD), effectively separating objects highly similar to the background has become a focal point of research. Due to the high simil... 详细信息
来源: 评论